-
In response to the technical issue in Raman distributed optical fiber technology where the traditional meter-level spatial resolution performance is insufficient, leading to a decline in system measurement accuracy within sub-spatial resolution fiber segments along the sensing fiber, a threshold coefficient fitting technique based on a one-dimensional peak-seeking method is proposed in this study. Significant temperature measurement errors of up to tens of degrees Celsius are caused by the overlap of Raman scattering signals from non-detection regions when the detection fiber length is shorter than the system's spatial resolution. This severely limits the technology application in scenarios requiring precise temperature monitoring. To overcome the above bottleneck, a purely algorithmic approach is introduced, which reconstructs the temperature field without requiring hardware modifications. The sensing fiber was globally scanned using the one-dimensional peak-finding algorithm to precisely locate sub-spatial resolution detection fiber regions. Simultaneously, the peak intensity, full width at half maximum (FWHM), and location were extracted from the temperature rise curve within the fiber under test (FUT). Through pre-calibration experiments, a quantitative fitting model was established between peak temperature rise curves and threshold coefficients, revealing a quantitative mapping relationship between FWHM and sensing distance, as well as length of FUT. The results indicated that FWHM exhibited a significant positive linear correlation with sensing distance, independent of temperature variations. This characteristic enabled FWHM to serve as a reliable feature parameter for identifying the actual length of detection fibres. During real-time measurements, the detection fiber length was determined via the mapping model based on extracted FWHM and location. Then the corresponding threshold coefficient fitting model is selected to compensate for distorted temperature rise peaks, thereby reconstructing distributed temperature field. Experimental results demonstrated that over a 10-kilometre sensing distance, the results indicate that the application of this technique significantly enhanced the temperature measurement accuracy within the 30 cm detection fiber, achieving 1.5 °C compared to the baseline accuracy of 34.7 °C before compensation. Conclusions indicate that the proposed threshold coefficient fitting technique, through algorithmic innovation, effectively overcomes the technical limitation of deteriorating temperature measurement accuracy in sub-spatial resolution regions within Raman distributed fibre optics sensing. The constructed FWHM quantitative mapping model provides critical basis for threshold compensation, ultimately achieving precise temperature monitoring of sub-metre regions within long-distance sensing contexts. This solution features a streamlined structure, low cost, and ease of engineering integration. It offers a novel approach for long-term, high-precision temperature monitoring in fields such as power cable fault orienation, oil and gas pipeline micro-leakage early warning, and civil structural health monitoring.
-
Keywords:
- distributed fibre optic sensing /
- Raman scattering /
- spatial resolution /
- high temperature accuracy
-
[1] Zhou X, Wang F, Yang C Y, Zhang Z J, Zhang Y X, Zhang X P 2023 Sensors 23 7116
[2] Li J, Zhang M J 2022 Light: Sci. Appl. 11 128
[3] Li J, Zhou X X, Xu Y, Qiao L J, Zhang J Z, Zhang M J 2022 Photonics Res. 10 205
[4] Zhou Z X, Sha Y S, Zhang D W,L H,Han Y S,Yang X Y,Liao F,Feng X W,Zhu J J,Zheng X F,Cui Z F,Qu J,Yuan Y S,Xu X F,Tao T B 2021 Opt. Fiber Technol. 66 102667
[5] Zhang X P, Zhang Y X, Wang L, Yu K L, Liu B, Yin G L, Liu K, Li X, Li S N, Ding C Q, Tang Y Q, Shang Y, Wang Y S, Wang C, Wang F, Fan X Y, Sun Q Z, Xie S R, Wu H J, Wu H, Wang H P, Zhao Z Y 2024 Acta Opt. Sin. 44 0106001 (in Chinese) [张旭苹, 张益昕, 王亮, 余贶琭, 刘波, 尹国路, 刘琨, 李璇, 李世念, 丁传奇, 汤玉泉, 尚盈, 王奕首, 王晨, 王峰, 樊昕昱, 孙琪真, 谢尚然, 吴慧娟, 吴昊, 王花平, 赵志勇 2024 光学学报 44 0106001]
[6] Wang X, Jiang J F, Wang S, Liu K, Liu T G 2021 Photonics Res. 9 521
[7] Wang Y P, Zhong H J, Shan R Y, Liang W F, Peng Z W, Meng Y J, Liao C R, Fu C L 2024 Laser Optoelectron. Prog. 61 0106002 (in Chinese) [王义平, 钟华健, 单荣毅, 梁文发, 彭振威, 孟彦杰, 廖常锐, 付彩玲 2024 激光与光电子学进展 61 0106002]
[8] Liang Z H, Deng K W, Ma Y L, Wang M H, Liu D B, Wu H Q, Wang Y S 2024 Acta Opt. Sin. 44 0106020 (in Chinese) [梁智洪, 邓凯文, 马云龙, 王明华, 刘德博, 吴会强, 王奕首 2024 光学学报 44 0106020]
[9] Yu T, Ren C G, Jia Y B, Li J, Zhang J Z, Xu Y 2021 IEEE Sens. J. 21 373
[10] L C B Silva, M E V Segatto, C E S Castellani 2022 Opt. Fiber Technol. 74 103091
[11] R Tangudu, P K Sahu, 2022 J. Inst. Electron. Telecommun. Eng. 39 553
[12] Zhu W H, Wu H T, Chen W X, Zhou M T, Yin G L, Guo N, Zhu T 2022 Sensors 22 9942
[13] Duan R 2022 IEEE Access 10 57242
[14] Xu Y, Li J, Zhang M J, Yu T, Yan B Q, Zhou X X, Yu F H, Zhang J Z, Qiao L J, Wang T, Gao S H 2020 IEEE Sens. J. 20 7870
[15] Kim H Y, Lee J H, Kim T K, Park S J, Kim H M, Jung I D 2023 Case Stud. Therm. Eng. 2023 42 102747
[16] Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320.
[17] Yan J F, Shi B, Zhu H H, Wang B J, Wei G Q, Cao D F 2015 Eng. Geol. 186 100
[18] Silva M S P e, Alves H P, Oliveira H J B d, Leão L H V, Nascimento J F d, Martins-Filho J F 2023 IEEE Trans. Instrum. Meas. 72 7003908.
[19] Liu T, Wang H H, Wang X,Wang Y H, Zeng S K, Wang Y R 2023 Opt. Fiber Technol. 75 103177
[20] Chen P C, Zhang.T, Yang J H,Dong X P D 2023 IEEE Sens. J. 23 17593
[21] Li J, Zhang Q, Xu Y, Zhang M J, Zhang J Z,Qiao L J, Promi P M M 2019 Opt. Express 27 38163
[22] Gasser J, Warpelin D, Bussieres F, Extermann J, Pomarico E 2022 Opt. Express 30 6768
[23] Ososkov Y Z, Chernutsky A O, Dvoretskiy D A, Sazonkin S G, Kudelin I S, Orekhov, I O, Pnev A B, Karasik V E 2019 Opt. Spectrosc. 127 664
[24] Jie R M, Xiao C, Liu X, Zhu C, Rao Y J, Liu B 2024 Acta Opt. Sin. 44 0106011 (in Chinese) [介瑞敏, 肖春, 刘旭, 朱琛, 饶云江, 刘波 2024 光学学报 44 0106011]
[25] Zhang F, Li J, Li L L, Cao K Y, Xue X H, Zhang M J 2025 Infrared and Laser Engineering 54 20240582 (in Chinese) [张帆, 李健, 李璐磊, 曹康怡, 薛晓辉, 张明江 2025 红外与激光工程 54 20240582]
[26] Lin Q C, Cheng L H, Lü J, Zhang T F, Liang H, Guan B O 2024 Acta Opt. Sin. 44 0106013 (in Chinese) [林全聪, 程凌浩, 吕杰, 张天放, 梁浩, 关柏鸥 2024 光学学报 44 255]
[27] Chai D D, Zhang H J, Gao Y, Jin B Q 2022 IEEE Sens. J. 23 2204
[28] Sun X Z, Yang Z S, Hong X B, Zaslawski S, Wang S, Soto M A,Gao X, Wu J, Thévenaz L 2020 Nat. Commun. 11 5774
[29] Wang M, Wu H, Tang M, Zhao Z Y, Dang Y L, Zhao C, Liao R L, Chen W, Fu S N, Yang C, Tong W J, Shum P P, Liu D M 2017 Opt. Express 25 4907-4916
[30] Liu Y P, Ma L, Yang C Tong W J, He Z Y 2018 Opt. Express 26 20562
[31] Wu H, Du H, Zhao C, Tang M 2022 Sensors 22 2139
[32] Dai G Y, Fan X Y, He Z Y 2018 2018 Asia Communications and Photonics Conference (ACP) Hangzhou China, October 26-29 2018 p1
[33] Soto M A, Ramírez J A, Thévenaz L 2016 Nat. Commun. 7 10870
[34] Zhang Z S, Wu H, Zhao C,Tang M 2021 J. Lightwave Technol. 39 654-659
[35] Ren Y L,Li T F, Wang R G, Li H G, Ba D X, Dong Y K 2025 Laser Photonics Rev. 19 2402071
[36] Wang C Y, Li J, Zhou X X, Cheng Z J, Qiao L J, Xue X H, Zhang M J 2023 Light:Sci. Appl. 12 213
[37] Fan B W, Li J, Cheng Z J,Xue X H, Zhang M J 2024 Photonics Res. 12 2365
[38] Li J, Zhou X X, Yin Z. T, Wang C Y,Xu Y, Zhang J Z, Zhang M J 2021 Adv. Photonics Res. 2 2100047
[39] Li J, Wang C Y, Cao K Y, Fan B W, Zhou X X, Xu Y, Cheng Z J, Zhang Q, Qiao L J, Xue X H, Zhang J Z, Zhang M J 2023 APL Photonics 8 076105
Metrics
- Abstract views: 18
- PDF Downloads: 1
- Cited By: 0









下载: