-
The precision determination of Rydberg states transition frequency is important for quantum sensing and computation. In this study, we prepare 133Cs Rydberg states of nD5/2, nD3/2, and nS1/2 by using a cascaded twophoton excitation scheme with counter-propagating 852 nm probe light and 509 nm coupling light in a cesium vapor cell. Furthermore, by introducing a microwave field to couple adjacent Rydberg states, we obtained the transition spectra between the Rydberg states based on electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting effects. Frequency calibration of the sampled data points collected by the oscilloscope was achieved using either the fine-structure splitting interval between nD5/2 and nD3/2 Rydberg states for n2D5/2→(n+1) 2P3/2 and n2D3/2 → (n+1) 2P1/2 transitions, or using a second EIT signal generated by an acousto-optic modulator frequency-shifted 852 nm laser for n2S1/2→n2P1/2 transitions. To reduce systematic errors, we employed a microwave frequency detuning method, calibrating the AT splitting intervals at different frequencies, and measured the resonant frequencies of three typical cesium Rydberg state transitions: n2D5/2→(n+1) 2P3/2 (n=39-53), n2D3/2→(n+1) 2P1/2 (n=39-47), and n2S1/2→n2P1/2 (n=59-62). Characterized by experimental simplicity, high precision, and broad applicability, this method is suitable for high-precision measurements of alkali metal Rydberg transition frequencies. Deviations between the experimentally measured transition frequencies and the theoretical values from the open-source Python library ARC (Alkali Rydberg Calculator) were all less than 850 kHz, with an average deviation of 449 kHz. Through the analysis of the influences of various physical effects such as Zeeman effect on the measurement of Rydberg state transition frequencies, the obtained measurement uncertainty is 410 kHz. This small deviation demonstrates the exceptional capability and reliability of the EIT-AT splitting method in overcoming environmental interference and achieving MHz-level precision measurements of Rydberg state transition frequencies. The results provide important data for Rydberg atom precision spectroscopy.
-
Keywords:
- Rydberg state /
- cesium atom /
- electromagnetically induced transparency /
- absolute transition frequency
-
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) Chap1
[2] Baugh J F, Ciocca M, Edmonds D A, Nellesen P T, Burkhardt CE, Leventhal J J 1996 Phys. Rev. A. 54 4641
[3] Fabre C, Haroche S 1975 Optics Communications 15 254
[4] Yerokhin V A, Buhmann S Y, Fritzsche S, Surzhykov A 2016 Phys. Rev. A. 94 032503
[5] Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831
[6] Jiao Y C, Han X X, Yang Z W, Li j k, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A. 94 023832
[7] Zhao J M, Zhang H, Feng Z G, Zhu X B, Zhang L J, Li C Y, Jia S T 2011 Journal of the Physical Society of Japan 80 034303
[8] Zhang H, Ma Y, Liao K Y, Yang W G, Liu Z K, Ding D S, Yan H, Li W H, Zhang L J 2024 Science Bulletin 69 1515
[9] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901
[10] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[11] Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565.
[12] Li X, Hou J Y, Wang J C, Wang G W, He X D, Zhou F, Wang Y B, Liu M, Wang J, Xu P, Zhan M S 2025 Nature Communications 16 9728
[13] Shi S, Xu B, Zhang K, Ye G S, Xiang D S, Liu Y B, Wang J Z, Su D Q, Li L 2022 Nature Communications 13 4454
[14] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[15] Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nature Physics 4 463
[16] Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W B 2024 Appl. Phys. Rev. 11 031320
[17] Deiglmayr J, Herburger H, Saßmannshausen H, Jansen P, Schmutz H, Merkt F 2016 Phys. Rev. A 93 013424
[18] Shen P R, Booth D, Liu C, Beattie S, Marceau C, Shaffer J P, Pawlak M, Sadeghpour H R 2024 Phys. Rev. Lett. 133 233005
[19] Shen P R, Pawlak M, Booth D, Nickerson K, Miladi H, Sadeghpour H R, Shaffer J 2025 Phys. Rev. A 112 022814
[20] Song R, Bai J X, Li Z H, Jiao Y C, Zhao J M, Jia S T 2024 Optics Express 32 25717
[21] Bohaichuk S M, Ripka F, Venu V, Christaller F, Liu C, Schmidt M, Kübler H, Shaffer J P 2023 Phys. Rev. A. 20 L061004
[22] Glick J, Anderson B E, Nunley T N, Bingham J, Lin J R, Meyer D H, Kumpf P, DeYoung A, Li J, Smith L, Andersen T 2025 arXiv:2506.04504v1 [physics.atom-ph]
[23] Zhao J H, Zhang H, Yang W G, Zhang L J, Jing M Y 2022 Journal of Quantum Optics 28 303 (in Chinese) [赵婧华, 张好, 杨文广, 张临杰, 景明勇 2022 量子光学学报 28 303]
[24] Bai S Y 2015 M.S. Thesis (Changchun: Northeast Normal University) (in Chinese) [白思音 2015 硕士学位论文 (长春:东北师范大学)]
[25] Meng Y M, Xiang J F, Xu B, Li B. Wan J Y, Ren W, Deng S M D, Zhang D, Lv D S 2023 Chinese Journal of Lasers 50 2301013 (in Chinese) [孟一鸣, 项静峰, 徐斌, 李彪, 万金银, 任伟, 邓思敏达, 张迪, 吕德胜 2023 中国激光 50 2301013]
[26] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
[27] Abi-Salloum T Y 2010 Phys. Rev. A. 81 053836
[28] Bian W, Zheng S Y, Li Z Q, Guo Z Y, Ma H K, Qiu S Y, Liao K Y, Zhang X D, Yan H 2023 Laser & Optoelectronics Progress 60 1106022 (in Chinese) [边武,郑顺元,李仲启,郭钟毓,马恒宽,仇思源,廖开宇,张新定,颜辉 2023 激光与光电子学进展 60 1106022]
[29] Xu B, Ye G S, Chang Y, Shi T, Li L 2024 Rep. Prog. Phys. 87 110502
[30] Zhang Z M 2015 Quantum Optics (Beijing: China Science Publishing) p47 (in Chinese) [张智明 2015 量子光学 (北京:科学出版社) 第47页]
[31] Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Physics Communications 220 319
[32] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B. 31 97
[33] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101
[34] Bao S X, Zhang H,Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A. 94 043822
[35] Steck D A http://steck.us/alkalidata [2019-11-21]
[36] Saßmannshausen H, Merkt F, Deiglmayr J 2013 Phys. Rev. A. 87 032519
[37] Allegrini M, Arimondo E, Orozco L A 2022 J. Phys. Chem. Ref. Data 51 043102
[38] Holloway C L, Prajapati N, Sherman J A, Rüfenacht A, Artusio-Glimpse A B, Simons M T, Robinson A K, La Mantia D S, Norrgard E B 2022 AVS Quantum Sci 4 034401
[39] Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A 2011 Phys. Rev. A. 84 053409
[40] Cardman R, Raithel G 2022 Phys. Rev. A. 106 052810
[41] Song R, Bai J X, Li Z H, Jiao Y C, Jia S T, Zhao J M 2024 Phys. Rev. A. 110 042815
Metrics
- Abstract views: 34
- PDF Downloads: 1
- Cited By: 0









下载: