搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中红外组合激光场调控宽带超连续谱的产生

陈东 余本海 汤清彬

中红外组合激光场调控宽带超连续谱的产生

陈东, 余本海, 汤清彬
PDF
导出引用
导出核心图
  • 本文对原子在波长为2000 nm、脉宽为12.5 fs的中红外驱动脉冲和脉宽为1.3 fs的紫外控制脉冲叠加形成的组合场中产生的高次谐波进行了研究.通过组合场驱动氦原子得到了谱宽为230 eV的超连续谱.利用组合场产生的谐波比单独利用中红外脉冲产生的谐波的强度高了3个量级.对超连续谱进行滤波并调节组合场中两束激光的延迟时间,可以直接产生100 as的单个脉冲.我们发现超连续谱的宽度和位置几乎不会因为驱动场和控制场强度的变化而改变,这种性质有利于从实验上获得单个宽谱阿秒脉冲.
    • 基金项目: 河南省科技计划(批准号: 082300410050)资助的课题.
    [1]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [3]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [4]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923

    [5]

    Cao W, Lan P F, Lu P X 2006 Acta Phys. Sin. 55 2115 (in Chinese) [曹 伟、兰鹏飞、陆培祥 2006 物理学报 55 2115]

    [6]

    Corkum P 1993 Phys. Rev. Lett. 71 1994

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, de Silvestri S, Nisoli M 2006 Science 314 433

    [9]

    Lan P F, Lu P X, Cao W, Wang X L 2007 Phys. Rev. A 76 043808

    [10]

    Zeng Z N, Cheng Y, Song X H, Li R X, Xu Z Z 2007 Phys. Rev. Lett. 98 203901

    [11]

    Hong W Y, Li Y H, Lu P X, Lan P F, Zhang Q B, Wang X B 2008 J. Opt. Soc. Am. B 25 1684

    [12]

    Wang S Y, Hong W Y, Lan P F, Zhang Q B, Lu P X 2009 J. Phys. B 42 105601

    [13]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [14]

    Cao W, Lu P X, Lan P F, Hong W Y, Wang X L 2007 J. Phys. B 40 869

    [15]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [16]

    Zheng Y H, Zeng Z N, Li X F, Chen X W, Liu P, Xiong H, Lu H, Zhao S T, Wei P F, Zhang L, Wang Z G, Liu J, Cheng Y, Li R X, Xu Z Z 2008 Opt. Lett. 33 234

    [17]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 R051801

    [18]

    Li Q G, Lan P F, Hong W Y, Zhang Q B, Lu P X 2009 Acta Phys. Sin. 58 5679 (in Chinese) [李钱光、兰鹏飞、洪伟毅、张庆斌、陆培祥2009 物理学报58 5679]

    [19]

    Lan P F, Lu P X, Cao W, Wang X L, Hong W Y 2007 Opt. Lett. 32 1186

    [20]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [21]

    Zheng Y H, Zeng Z N, Zou P, Zhang L, Li X F, Liu P, Li R X, Xu Z Z 2009 Phys. Rev. Lett. 103 043904

    [22]

    Takahashi E, Kanai T, Ishikawa K, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901

    [23]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [24]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett. 62 811

    [25]

    Hong W Y, Yang Z Y, Lan P F, Zhang Q B, Li Q G, Lu P X 2009 Acta Phys. Sin. 58 4914 (in Chinese) [洪伟毅、杨振宇、兰鹏飞、张庆斌、李钱光、陆培祥 2009 物理学报 58 4914]

    [26]

    Zhang Q B, Lu P X, Lan P F, Hong W Y, Yang Z Y 2008 Opt. Express 16 9795

    [27]

    Ferr M D, Fleck Jr J A, Steiger A 1982 J. Appl. Phys. 47 412

    [28]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347

    [29]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [30]

    Li Q G, Lu P X, Lan P F, Hong W Y, Zhang Q B 2009 J. Phys. B 42 165601

    [31]

    Hong W Y, Lu P X, Li Q G, Zhang Q B 2009 Opt. Lett. 34 2102

    [32]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 76 1234

    [33]

    Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [34]

    Mairesse Y, de Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourtl P, Breger P, Kovaocev M, Taieb R, Carrec B, Muller H G, Agostini P, Salieres P 2003 Science 302 1540

    [35]

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579 (in Chinese) [叶小亮、周效信、赵松峰、李鹏程 2009 物理学报 58 1579]

    [36]

    Lan P F, Lu P X, Cao W, Wang X L, Yang G 2006 Phys. Rev. A 74 063411

  • [1]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [3]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [4]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923

    [5]

    Cao W, Lan P F, Lu P X 2006 Acta Phys. Sin. 55 2115 (in Chinese) [曹 伟、兰鹏飞、陆培祥 2006 物理学报 55 2115]

    [6]

    Corkum P 1993 Phys. Rev. Lett. 71 1994

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, de Silvestri S, Nisoli M 2006 Science 314 433

    [9]

    Lan P F, Lu P X, Cao W, Wang X L 2007 Phys. Rev. A 76 043808

    [10]

    Zeng Z N, Cheng Y, Song X H, Li R X, Xu Z Z 2007 Phys. Rev. Lett. 98 203901

    [11]

    Hong W Y, Li Y H, Lu P X, Lan P F, Zhang Q B, Wang X B 2008 J. Opt. Soc. Am. B 25 1684

    [12]

    Wang S Y, Hong W Y, Lan P F, Zhang Q B, Lu P X 2009 J. Phys. B 42 105601

    [13]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [14]

    Cao W, Lu P X, Lan P F, Hong W Y, Wang X L 2007 J. Phys. B 40 869

    [15]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [16]

    Zheng Y H, Zeng Z N, Li X F, Chen X W, Liu P, Xiong H, Lu H, Zhao S T, Wei P F, Zhang L, Wang Z G, Liu J, Cheng Y, Li R X, Xu Z Z 2008 Opt. Lett. 33 234

    [17]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 R051801

    [18]

    Li Q G, Lan P F, Hong W Y, Zhang Q B, Lu P X 2009 Acta Phys. Sin. 58 5679 (in Chinese) [李钱光、兰鹏飞、洪伟毅、张庆斌、陆培祥2009 物理学报58 5679]

    [19]

    Lan P F, Lu P X, Cao W, Wang X L, Hong W Y 2007 Opt. Lett. 32 1186

    [20]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [21]

    Zheng Y H, Zeng Z N, Zou P, Zhang L, Li X F, Liu P, Li R X, Xu Z Z 2009 Phys. Rev. Lett. 103 043904

    [22]

    Takahashi E, Kanai T, Ishikawa K, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901

    [23]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [24]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett. 62 811

    [25]

    Hong W Y, Yang Z Y, Lan P F, Zhang Q B, Li Q G, Lu P X 2009 Acta Phys. Sin. 58 4914 (in Chinese) [洪伟毅、杨振宇、兰鹏飞、张庆斌、李钱光、陆培祥 2009 物理学报 58 4914]

    [26]

    Zhang Q B, Lu P X, Lan P F, Hong W Y, Yang Z Y 2008 Opt. Express 16 9795

    [27]

    Ferr M D, Fleck Jr J A, Steiger A 1982 J. Appl. Phys. 47 412

    [28]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347

    [29]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [30]

    Li Q G, Lu P X, Lan P F, Hong W Y, Zhang Q B 2009 J. Phys. B 42 165601

    [31]

    Hong W Y, Lu P X, Li Q G, Zhang Q B 2009 Opt. Lett. 34 2102

    [32]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 76 1234

    [33]

    Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [34]

    Mairesse Y, de Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourtl P, Breger P, Kovaocev M, Taieb R, Carrec B, Muller H G, Agostini P, Salieres P 2003 Science 302 1540

    [35]

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579 (in Chinese) [叶小亮、周效信、赵松峰、李鹏程 2009 物理学报 58 1579]

    [36]

    Lan P F, Lu P X, Cao W, Wang X L, Yang G 2006 Phys. Rev. A 74 063411

  • [1] 刘硕, 陈高, 朱颀人, 陈基根. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [2] 兰鹏飞, 洪伟毅, 张庆斌, 陆培祥, 李钱光. 阿秒电离门调控宽带超连续谱的传播特性. 物理学报, 2009, 58(8): 5679-5684. doi: 10.7498/aps.58.5679
    [3] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [4] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [5] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [6] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [7] 刘卫华, 彭钦军, 许祖彦, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [8] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [9] 闫培光, 吕可诚, 贾亚青, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [10] 刘昆陇, 洪伟毅, 王少义, 张庆斌, 陆培祥. 中红外偏振态门驱动产生高效的极宽超连续谱. 物理学报, 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [11] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [12] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [13] 叶小亮, 赵松峰, 李鹏程, 周效信. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [15] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [16] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [17] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [18] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, 2019, 68(18): 184201. doi: 10.7498/aps.68.20190392
    [19] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验. 物理学报, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [20] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3496
  • PDF下载量:  785
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-19
  • 修回日期:  2009-10-30
  • 刊出日期:  2010-07-15

中红外组合激光场调控宽带超连续谱的产生

  • 1. 信阳师范学院物理电子工程学院,信阳 464000
    基金项目: 

    河南省科技计划(批准号: 082300410050)资助的课题.

摘要: 本文对原子在波长为2000 nm、脉宽为12.5 fs的中红外驱动脉冲和脉宽为1.3 fs的紫外控制脉冲叠加形成的组合场中产生的高次谐波进行了研究.通过组合场驱动氦原子得到了谱宽为230 eV的超连续谱.利用组合场产生的谐波比单独利用中红外脉冲产生的谐波的强度高了3个量级.对超连续谱进行滤波并调节组合场中两束激光的延迟时间,可以直接产生100 as的单个脉冲.我们发现超连续谱的宽度和位置几乎不会因为驱动场和控制场强度的变化而改变,这种性质有利于从实验上获得单个宽谱阿秒脉冲.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回