搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeS2-Ga2S3-CsCl玻璃的三阶非线性光学性能研究

李卓斌 林常规 聂秋华 徐铁峰 戴世勋

GeS2-Ga2S3-CsCl玻璃的三阶非线性光学性能研究

李卓斌, 林常规, 聂秋华, 徐铁峰, 戴世勋
PDF
导出引用
  • 用传统的熔融急冷法制备了组分为(100-2x) GeS2-xGa2S3-xCsCl (x= 15, 20, 25 mol%)系列硫卤玻璃, 测试了样品玻璃的吸收光谱. 采用Z-扫描方法测试了样品的三阶非线性光学特性. 分析了激光光子能量与玻璃三阶非线性光学特性的关系,并研究了组分变化对玻璃的三阶非线性性能的影响. 研究结果表明,光子能量的少许改变可以使非线性吸收系数在一个较大的范围内变化,随着光子能量的增大, 玻璃的非线性吸收系数 增大;当光子能量趋近于0.5Eg时, 值趋近于0,玻璃有最佳的品质因子; 玻璃样品中CsCl含量的增加使得玻璃的光学带隙Eg增大,短波截止边蓝移,非线性吸收系数 减小. 但是由于结构与带隙对光学非线性的影响相反,非线性折射率 值变化不大. 该结果表明样品的光学非线性性能由光学带隙和结构两方面因素共同决定,对今后研究全光开关用硫系玻璃具有一定的指导意义和参考价值.
    • 基金项目: 国家自然科学基金(批准号: 61108057)、浙江省自然科学基金(批准号: Y4110322)、 宁波市自然科学基金(批准号: 2011A610091)和宁波大学王宽诚幸福基金资助的课题.
    [1]

    Asobe M 1997 Opt. Fiber Tech. 3 142

    [2]

    Harbold J M, Ilday F ö, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B, Aggarwal I D 2002 Opt. Lett. 27 119

    [3]

    Oprea I I, Hesse H, Betzler K 2004 Opt. Mater. 26 235

    [4]

    Tao H Z, Lin C G, Xiao H Y, Wang Z W, Chu S S, Wang S F, Zhao X J, Gong Q H 2006 J. Mater. Sci. 41 6481

    [5]

    Pelusi M D, Luan F, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Eggleton B J 2010 Photon. Technol. Lett. 22 3

    [6]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [7]

    Monat C, Spurny M, Grellet C, O'Faolain L, Krauss T F, Eggleton B J, Bulla D, Madden S, Luther-Davies B 2011 Opt. Lett. 36 2818

    [8]

    Asobe M, Kanamori T, Kubodera K 1993 IEEE J. Quantum Elect. 29 2325

    [9]

    Tikhomirov V K, Tikhomirova S A 2001 J. Non-Cryst. Solids 284 193

    [10]

    Bindra K S, Bookey H T, Kar A K, Wherrett B S 2001 Appl. Phys. Lett. 79 1939

    [11]

    Wang G X, Nie Q H, Wang X S, Xu T F, Dai S X, Shen X, Zhu M X 2010 Acta Photon. Sin. 39 460 (in Chinese) [王国祥, 聂秋华, 王训四, 徐铁峰, 戴世勋, 沈祥, 朱明星 2010 光子学报 39 460]

    [12]

    Lorenc D, Aranyosiova M, Buczynski R, Stepien R, Bugar I, Vincze A, Velic D 2008 Appl. Phys. B 93 531

    [13]

    Dong G P, Tao H Z, Xiao X D, Lin C G, Gong Y Q, Zhao X J, Chu S S, Wang S F, Gong Q H 2007 Opt. Express 15 2398

    [14]

    Smektala F, Quemard C, Couderc V, Barthélémy A 2000 J. Non-Cryst. Solids 274 232

    [15]

    Troles J, Smektala F, Boudebs G, Monteil A, Bureau B, Lucas J 2004 Opt. Mater. 25 231

    [16]

    Ganeev R A, Ryasnyansky A I, Kodirov M K, Usmanov T 2002 J. Opt. A: Pure Appl. Opt. 4 446

    [17]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, van Strykand E W 1990 IEEE J. Quantum Elect. 26 760

    [18]

    Falcao-Filho E L, Bosco C A C, Maciel G S, Acioli L H, de Araújo C B, Lipovskii A A, Tagantsev D K 2004 Phys. Rev. B 69 134204

    [19]

    Lin C G, Calvez L, Ying L, Chen F F, Song B A, Shen X, Dai S X, Zhang X H 2011 Appl. Phys. A 104 615

    [20]

    Wang X F, Wang Z W, Yu J G, Liu C L, Zhao X J, Gong Q H 2004 Chem. Phys. Lett. 399 230

  • [1]

    Asobe M 1997 Opt. Fiber Tech. 3 142

    [2]

    Harbold J M, Ilday F ö, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B, Aggarwal I D 2002 Opt. Lett. 27 119

    [3]

    Oprea I I, Hesse H, Betzler K 2004 Opt. Mater. 26 235

    [4]

    Tao H Z, Lin C G, Xiao H Y, Wang Z W, Chu S S, Wang S F, Zhao X J, Gong Q H 2006 J. Mater. Sci. 41 6481

    [5]

    Pelusi M D, Luan F, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Eggleton B J 2010 Photon. Technol. Lett. 22 3

    [6]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [7]

    Monat C, Spurny M, Grellet C, O'Faolain L, Krauss T F, Eggleton B J, Bulla D, Madden S, Luther-Davies B 2011 Opt. Lett. 36 2818

    [8]

    Asobe M, Kanamori T, Kubodera K 1993 IEEE J. Quantum Elect. 29 2325

    [9]

    Tikhomirov V K, Tikhomirova S A 2001 J. Non-Cryst. Solids 284 193

    [10]

    Bindra K S, Bookey H T, Kar A K, Wherrett B S 2001 Appl. Phys. Lett. 79 1939

    [11]

    Wang G X, Nie Q H, Wang X S, Xu T F, Dai S X, Shen X, Zhu M X 2010 Acta Photon. Sin. 39 460 (in Chinese) [王国祥, 聂秋华, 王训四, 徐铁峰, 戴世勋, 沈祥, 朱明星 2010 光子学报 39 460]

    [12]

    Lorenc D, Aranyosiova M, Buczynski R, Stepien R, Bugar I, Vincze A, Velic D 2008 Appl. Phys. B 93 531

    [13]

    Dong G P, Tao H Z, Xiao X D, Lin C G, Gong Y Q, Zhao X J, Chu S S, Wang S F, Gong Q H 2007 Opt. Express 15 2398

    [14]

    Smektala F, Quemard C, Couderc V, Barthélémy A 2000 J. Non-Cryst. Solids 274 232

    [15]

    Troles J, Smektala F, Boudebs G, Monteil A, Bureau B, Lucas J 2004 Opt. Mater. 25 231

    [16]

    Ganeev R A, Ryasnyansky A I, Kodirov M K, Usmanov T 2002 J. Opt. A: Pure Appl. Opt. 4 446

    [17]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, van Strykand E W 1990 IEEE J. Quantum Elect. 26 760

    [18]

    Falcao-Filho E L, Bosco C A C, Maciel G S, Acioli L H, de Araújo C B, Lipovskii A A, Tagantsev D K 2004 Phys. Rev. B 69 134204

    [19]

    Lin C G, Calvez L, Ying L, Chen F F, Song B A, Shen X, Dai S X, Zhang X H 2011 Appl. Phys. A 104 615

    [20]

    Wang X F, Wang Z W, Yu J G, Liu C L, Zhao X J, Gong Q H 2004 Chem. Phys. Lett. 399 230

  • [1] 陈爱平, 龙华, 王凯, 杨光, 付明, 李玉华, 陆培祥. CuO薄膜的三阶非线性光学特性研究. 物理学报, 2009, 58(1): 607-611. doi: 10.7498/aps.58.607
    [2] 沈祥, 聂秋华, 徐铁峰, 戴世勋, 王训四, 吴礼刚. GeSe2-Sb2Se3-CsCl玻璃的光学性质与析晶动力学研究. 物理学报, 2010, 59(3): 2045-2050. doi: 10.7498/aps.59.2045
    [3] 庄晓波, 夏海平. 用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性. 物理学报, 2012, 61(18): 184213. doi: 10.7498/aps.61.184213
    [4] 夏春辉, 陈志敏, 吴谊群, 宋瑛林. 三-α-(2,4-二甲基-3-戊氧基)溴硼亚酞菁的三阶非线性光学性质研究. 物理学报, 2005, 54(11): 5168-5172. doi: 10.7498/aps.54.5168
    [5] 陈煜, 李云静, 聂玉昕, 王夺元. 8-辛烷氧基金属酞菁的皮秒三阶光学非线性与光限幅特性. 物理学报, 2002, 51(3): 578-583. doi: 10.7498/aps.51.578
    [6] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [7] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [8] 肖剑荣, 徐 慧, 李燕峰, 李明君. 氮分压对氮化铜薄膜结构及光学带隙的影响. 物理学报, 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [9] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [10] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [11] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [12] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙. 物理学报, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [13] 叶超, 宁兆元, 程珊华, 王响英. 氟化非晶碳薄膜的光学带隙分析. 物理学报, 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
    [14] 蒋爱华, 肖剑荣, 王德安. 退火对含氮氟非晶碳膜结构及光学带隙的影响. 物理学报, 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [15] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [16] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [17] 兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月. Ni掺杂ZnO薄膜的结构与光学特性研究. 物理学报, 2009, 58(12): 8501-8505. doi: 10.7498/aps.58.8501
    [18] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能. 物理学报, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [19] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [20] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2174
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-17
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

GeS2-Ga2S3-CsCl玻璃的三阶非线性光学性能研究

  • 1. 宁波大学红外材料及器件实验室, 宁波 315211;
  • 2. 中国科学院宁波材料技术与工程研究所, 宁波 315201
    基金项目: 

    国家自然科学基金(批准号: 61108057)、浙江省自然科学基金(批准号: Y4110322)、 宁波市自然科学基金(批准号: 2011A610091)和宁波大学王宽诚幸福基金资助的课题.

摘要: 用传统的熔融急冷法制备了组分为(100-2x) GeS2-xGa2S3-xCsCl (x= 15, 20, 25 mol%)系列硫卤玻璃, 测试了样品玻璃的吸收光谱. 采用Z-扫描方法测试了样品的三阶非线性光学特性. 分析了激光光子能量与玻璃三阶非线性光学特性的关系,并研究了组分变化对玻璃的三阶非线性性能的影响. 研究结果表明,光子能量的少许改变可以使非线性吸收系数在一个较大的范围内变化,随着光子能量的增大, 玻璃的非线性吸收系数 增大;当光子能量趋近于0.5Eg时, 值趋近于0,玻璃有最佳的品质因子; 玻璃样品中CsCl含量的增加使得玻璃的光学带隙Eg增大,短波截止边蓝移,非线性吸收系数 减小. 但是由于结构与带隙对光学非线性的影响相反,非线性折射率 值变化不大. 该结果表明样品的光学非线性性能由光学带隙和结构两方面因素共同决定,对今后研究全光开关用硫系玻璃具有一定的指导意义和参考价值.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回