搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

宋坤 柴常春 杨银堂 贾护军 陈斌 马振洋

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋
PDF
导出引用
导出核心图
  • 基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压.
    • 基金项目: 国家杰出青年基金(批准号: 60725415)和国家部委预研项目(批准号: 51308030201)资助的课题.
    [1]

    Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987

    [2]

    Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065

    [3]

    Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287

    [4]

    Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410

    [5]

    Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622

    [6]

    Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 物理学报 57 2871]

    [7]

    Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285

    [8]

    Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1

    [9]

    Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343

    [10]

    Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353

    [11]

    Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839

    [12]

    Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729

    [13]

    Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456

    [14]

    Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359

    [15]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048

    [16]

    Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387

    [17]

    Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143

    [18]

    Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865

    [19]

    Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341

    [20]

    Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363

    [21]

    Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442

    [22]

    Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191

    [23]

    DESSIS-ISE Manual Ver. 10.0, ISE

    [24]

    Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386

    [25]

    Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389

    [26]

    Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925

    [27]

    Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827

    [28]

    Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039

  • [1]

    Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987

    [2]

    Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065

    [3]

    Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287

    [4]

    Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410

    [5]

    Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622

    [6]

    Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 物理学报 57 2871]

    [7]

    Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285

    [8]

    Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1

    [9]

    Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343

    [10]

    Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353

    [11]

    Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839

    [12]

    Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729

    [13]

    Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456

    [14]

    Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359

    [15]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048

    [16]

    Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387

    [17]

    Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143

    [18]

    Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865

    [19]

    Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341

    [20]

    Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363

    [21]

    Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442

    [22]

    Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191

    [23]

    DESSIS-ISE Manual Ver. 10.0, ISE

    [24]

    Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386

    [25]

    Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389

    [26]

    Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925

    [27]

    Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827

    [28]

    Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2013
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-06
  • 修回日期:  2012-02-29
  • 刊出日期:  2012-09-05

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

  • 1. 西安电子科技大学微电子学院, 教育部宽禁带半导体材料与器件重点实验室, 西安 710071
    基金项目: 

    国家杰出青年基金(批准号: 60725415)和国家部委预研项目(批准号: 51308030201)资助的课题.

摘要: 基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回