搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC过渡层制备温度对碳化硅/氟化类金刚石复合薄膜血液相容性的影响

佘清 江美福 钱侬 潘越

SiC过渡层制备温度对碳化硅/氟化类金刚石复合薄膜血液相容性的影响

佘清, 江美福, 钱侬, 潘越
PDF
导出引用
导出核心图
  • 以316L不锈钢为基底,SiC晶体为靶材,Ar为源气体,采用磁控溅射法在不同温度下制备出系列SiC过渡层. 然后以高纯石墨作靶,Ar和CHF3为源气体,在同一工艺条件下再续镀一层氟化类金刚石(F-DLC)薄膜,形成SiC/F-DLC复合薄膜. 研究表明,相比于F-DLC薄膜,复合薄膜的附着力显著增加,血液相容性明显改善. 通过样品的拉曼和红外光谱分析了不同温度下制备的SiC过渡层以及复合薄膜结构的演变. 结果表明,控制SiC 过渡层制备温度可以有效调制过渡层中C=C键的 比例以及-C-C-不饱和键的密度,复合薄膜中保留较高比例的芳香环式结构以及合适的F/C比是薄膜的血液相容性得以进一步改善的原因,SiC过渡层制备温度控制在500 ℃左右效果尤为明显. SiC 薄膜和F-DLC两种薄膜的界面处形成一定比例的Si-C键和C=C键是导致复合薄膜附着力显著上升的直接原因. 适当条件下在316L不锈钢和F-DLC薄膜之间增加SiC过渡层对于增强薄膜的附着力、改善其血液相容性是可行、有效的.
    • 基金项目: 国家自然基金(批准号:11275136)资助的课题.
    [1]

    Park J B, Kim Y K 2003 Biomaterials Principles and Applications (Boca Raton: CRC Press) p1

    [2]

    Brunski J B 2004 Biomaterials Science an Introduction to Materials in Medicine (San Diego: Elsevier Academic Press) p137

    [3]

    Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647

    [4]

    Yu Y T 2000 Bio-medical Materials (Tianjin: Tianjin University Press) p20 (in Chinese)[俞耀庭 2000 生物医用材料 (天津: 天津大学出版社) 第20页]

    [5]

    Gutensohn K, Beythien C, Bau J, Fenner T, Grewe P, Koester R, Padmanaban K, Kuehnl P 2000 Thrombosis Research 99 577

    [6]

    Ding M H, Wang B L, Li L, Zheng Y F 2010 Surf. Coat. Technol. 204 2519

    [7]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [8]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [9]

    Han Y Y, Guo H, Yin F Z, Zhang X M, Chu K, Fan Y M 2012 Rare Metals 31 58

    [10]

    Huang Y J, Wang Q, Wang M, Fei Z Y, Li M S 2011 Rare Metals 31 198

    [11]

    Wang J, Liu G C, Wang L D, Deng X L, Xu J 2008 Chin. Phys. B 17 3113

    [12]

    Wang P J, Jiang M F, Xin Y, Du J L, Dai Y F 2010 Acta Phys. Sin. 59 8902(in Chinese)[王培君, 江美福, 辛煜, 杜记龙, 戴永丰 2010 物理学报 59 8902]

    [13]

    Dai Y F, Jiang M F, Yiang Y S, Zhou Y 2011 Acta Phys. Sin. 60 118101(in Chinese)[戴永丰, 江美福, 杨亦赏, 周杨 2011 物理学报 60 118101]

    [14]

    Hakovirta M, He X M, Nastasi M 2000 Appl. Phys. 88 1456

    [15]

    Hasebe T, Ishimaru T, Kamijo A, Yoshimoto Y, Yoshimura T, Yohena S, Kodama H, Hotta A, Takahashi K, Suzuki T 2007 Diamond Relat. Mater 16 1343

    [16]

    Yang Y S, Jiang G, Zhou Y, Jiang M F 2012 J. Suzhou Univ. 28 51(in Chinese)[杨亦赏, 江舸, 周杨, 江美福 2012 苏州大学学报 28 51]

    [17]

    Cooper J A, Agarwal A K, Hara K 1999 IEEE Trans. Electron Dev. 46 442

    [18]

    Son J I, Shim J H, Cho N H 2010 Curr. Appl. Phys. 10 S365

    [19]

    Lin S H, Chen Z M, Li L B, Ba Y T, Liu S J, Yang M C 2012 Physica. B 407 670

    [20]

    Pan Y, Zhao Q, Jiang G, Zhou Y, Jiang M F, Yang Y S 2013 Acta Phys. Sin. 62 015209(in Chinese)[潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏 2013 物理学报 62 015209]

    [21]

    Ollendorf H, Schneider D 1999 Surf. Coat. Tech 113 86

    [22]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [23]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [24]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [25]

    Hobert H, Dunken H H, Meinschien J, Stafast H 1999 Vib. Spectrosc. 19 205

    [26]

    Kuntumalla M K, Ojha H, Srikanth V V S S 2013 Thin Solid Films 541 62

    [27]

    Jiang M F, Ning Z Y 2006 Surf. Coat. Technol. 200 3682

    [28]

    Jiang M F, Ning Z Y 2004 Acta Phys. Sin. 53 1588(in Chinese)[江美福, 宁兆元 2004 物理学报 53 1588]

  • [1]

    Park J B, Kim Y K 2003 Biomaterials Principles and Applications (Boca Raton: CRC Press) p1

    [2]

    Brunski J B 2004 Biomaterials Science an Introduction to Materials in Medicine (San Diego: Elsevier Academic Press) p137

    [3]

    Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647

    [4]

    Yu Y T 2000 Bio-medical Materials (Tianjin: Tianjin University Press) p20 (in Chinese)[俞耀庭 2000 生物医用材料 (天津: 天津大学出版社) 第20页]

    [5]

    Gutensohn K, Beythien C, Bau J, Fenner T, Grewe P, Koester R, Padmanaban K, Kuehnl P 2000 Thrombosis Research 99 577

    [6]

    Ding M H, Wang B L, Li L, Zheng Y F 2010 Surf. Coat. Technol. 204 2519

    [7]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [8]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [9]

    Han Y Y, Guo H, Yin F Z, Zhang X M, Chu K, Fan Y M 2012 Rare Metals 31 58

    [10]

    Huang Y J, Wang Q, Wang M, Fei Z Y, Li M S 2011 Rare Metals 31 198

    [11]

    Wang J, Liu G C, Wang L D, Deng X L, Xu J 2008 Chin. Phys. B 17 3113

    [12]

    Wang P J, Jiang M F, Xin Y, Du J L, Dai Y F 2010 Acta Phys. Sin. 59 8902(in Chinese)[王培君, 江美福, 辛煜, 杜记龙, 戴永丰 2010 物理学报 59 8902]

    [13]

    Dai Y F, Jiang M F, Yiang Y S, Zhou Y 2011 Acta Phys. Sin. 60 118101(in Chinese)[戴永丰, 江美福, 杨亦赏, 周杨 2011 物理学报 60 118101]

    [14]

    Hakovirta M, He X M, Nastasi M 2000 Appl. Phys. 88 1456

    [15]

    Hasebe T, Ishimaru T, Kamijo A, Yoshimoto Y, Yoshimura T, Yohena S, Kodama H, Hotta A, Takahashi K, Suzuki T 2007 Diamond Relat. Mater 16 1343

    [16]

    Yang Y S, Jiang G, Zhou Y, Jiang M F 2012 J. Suzhou Univ. 28 51(in Chinese)[杨亦赏, 江舸, 周杨, 江美福 2012 苏州大学学报 28 51]

    [17]

    Cooper J A, Agarwal A K, Hara K 1999 IEEE Trans. Electron Dev. 46 442

    [18]

    Son J I, Shim J H, Cho N H 2010 Curr. Appl. Phys. 10 S365

    [19]

    Lin S H, Chen Z M, Li L B, Ba Y T, Liu S J, Yang M C 2012 Physica. B 407 670

    [20]

    Pan Y, Zhao Q, Jiang G, Zhou Y, Jiang M F, Yang Y S 2013 Acta Phys. Sin. 62 015209(in Chinese)[潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏 2013 物理学报 62 015209]

    [21]

    Ollendorf H, Schneider D 1999 Surf. Coat. Tech 113 86

    [22]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [23]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [24]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [25]

    Hobert H, Dunken H H, Meinschien J, Stafast H 1999 Vib. Spectrosc. 19 205

    [26]

    Kuntumalla M K, Ojha H, Srikanth V V S S 2013 Thin Solid Films 541 62

    [27]

    Jiang M F, Ning Z Y 2006 Surf. Coat. Technol. 200 3682

    [28]

    Jiang M F, Ning Z Y 2004 Acta Phys. Sin. 53 1588(in Chinese)[江美福, 宁兆元 2004 物理学报 53 1588]

  • [1] 潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏. SiC过渡层对氟化类金刚石薄膜附着特性的影响. 物理学报, 2013, 62(1): 015209. doi: 10.7498/aps.62.015209
    [2] 韩亮, 刘德连, 陈仙, 赵玉清. 氮化铬过渡层对四面体非晶碳薄膜在高速钢基底上附着特性影响的研究. 物理学报, 2013, 62(9): 096802. doi: 10.7498/aps.62.096802
    [3] 王必本, 王万录, 廖克俊, 肖金龙, 方亮. 离子的轰击对Si衬底上金刚石核附着力的影响. 物理学报, 2001, 50(2): 251-255. doi: 10.7498/aps.50.251
    [4] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [5] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [6] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [7] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [8] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [9] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [10] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [11] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [12] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [13] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [15] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [16] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [17] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [18] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [19] 丁万昱, 王华林, 柴卫平, 巨东英. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [20] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜. 物理学报, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
  • 引用本文:
    Citation:
计量
  • 文章访问数:  729
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-13
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-09-20

SiC过渡层制备温度对碳化硅/氟化类金刚石复合薄膜血液相容性的影响

  • 1. 苏州大学物理科学与技术学院, 苏州 215006
    基金项目: 

    国家自然基金(批准号:11275136)资助的课题.

摘要: 以316L不锈钢为基底,SiC晶体为靶材,Ar为源气体,采用磁控溅射法在不同温度下制备出系列SiC过渡层. 然后以高纯石墨作靶,Ar和CHF3为源气体,在同一工艺条件下再续镀一层氟化类金刚石(F-DLC)薄膜,形成SiC/F-DLC复合薄膜. 研究表明,相比于F-DLC薄膜,复合薄膜的附着力显著增加,血液相容性明显改善. 通过样品的拉曼和红外光谱分析了不同温度下制备的SiC过渡层以及复合薄膜结构的演变. 结果表明,控制SiC 过渡层制备温度可以有效调制过渡层中C=C键的 比例以及-C-C-不饱和键的密度,复合薄膜中保留较高比例的芳香环式结构以及合适的F/C比是薄膜的血液相容性得以进一步改善的原因,SiC过渡层制备温度控制在500 ℃左右效果尤为明显. SiC 薄膜和F-DLC两种薄膜的界面处形成一定比例的Si-C键和C=C键是导致复合薄膜附着力显著上升的直接原因. 适当条件下在316L不锈钢和F-DLC薄膜之间增加SiC过渡层对于增强薄膜的附着力、改善其血液相容性是可行、有效的.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回