搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡族金属掺杂Al(111)表面对氢分子催化分解的影响

范立华 曹觉先

过渡族金属掺杂Al(111)表面对氢分子催化分解的影响

范立华, 曹觉先
PDF
导出引用
导出核心图
  • 为了探求过渡金属催化剂对催化合成储氢材料NaAlH4效果的影响, 本文采用第一性原理方法研究了多种金属原子取代Al (111)表面铝原子形成的合金表面对氢的催化分解的影响. 计算结果表明, Sc, V, Fe, Ti原子掺杂的表面对氢分子分解具有催化作用. H2在对应的掺杂表面催化分解所需要的活化能分别为0.54 eV, 0.29 eV, 0.51 eV, 0.12 eV. H原子在Sc, V, Ti掺杂表面扩散需要的活化能分别为0.51 eV, 0.66 eV, 0.57 eV. 同时, 过渡金属掺杂在Al表面时倾向于分散分布, 增加掺杂表面的掺杂原子个数, 掺杂表面的催化效果体现为单个掺杂过渡金属原子的催化效果. 本研究将为金属掺杂Al (111)表面催化加氢合成NaAlH4提供理论参考.
    • 基金项目: 国家自然科学基金(批准号: 11074212, 11204259, 11374252)和教育部新世纪优秀人才支持计划(批准号: NCET-12-0722)资助的课题.
    [1]

    Schlapbach L, Zttel A 2001 Nature 414 353

    [2]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [3]

    Wu M, Wang Q, Sun Q, Jena P 2013 J. Phys. Chem. C 117 6055

    [4]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [5]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

    [6]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco? M, Zttel A 2013 J. Phys. Chem. C 117 22598

    [7]

    Sano N, Taniguchi K, Tamon H 2014 J. Phys. Chem. C 118(7) 3402

    [8]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [9]

    Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111

    [10]

    Liu X, McGrady G S, Langmi H W, Jensen C M 2009 J. Am. Chem. Soc. 131 5032

    [11]

    Liu Y, Liang C, Zhou H, Gao M, Pan H, Wang Q 2011 Chem. Commun. 47 1740

    [12]

    Zhang H, Xiao M Z, Zhang G Y, Lu G X, Zhu S L 2011 Acta. Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]

    [13]

    Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2010 Chin. Phys. B 19 048601

    [14]

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta. Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]

    [15]

    Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O, Hlil E K 2012 Chin. Phys. B 21 097501

    [16]

    Lozano G A, Ranong C N, Bellosta von Colbe J M, Bormann R, Hapke J, Fieg G, Klassen T, Dornheim M 2012 Int. J. Hydrogen Energy 37 2825

    [17]

    Bogdanović B, Schwickardi M 1997 J. Alloys. Compd. 253 1

    [18]

    Chaudhuri S, Graetz J, Ignatov A, Reilly J J, Muckerman J T 2006 J. Am. Chem. Soc. 128 11404

    [19]

    Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 80

    [20]

    Chaudhuri S, Muckerman J T 2005 J. Phys. Chem. B 109 6952

    [21]

    Wang J, Du Y, Kong Y, Xu H H, Jiang C, Ouyang Y F, Sun L X 2010 Int. J. Hydrogen Energy 35 609

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [24]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978

    [25]

    Henkelman G, Jónsson H 1999 J. Chem. Phys. 111 7010

    [26]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305

    [27]

    Anton D L 2003 J. Alloys. Compd. 356 400

    [28]

    Marashdeh A, Versluis JW I, Valdés Á, Olsen R A, Løvvik O M, Kroes GJ 2013 J. Phys. Chem. C 117(1) 3

    [29]

    Kubas G J 2001 J. Organomet. Chem. 635 37

    [30]

    Kubas G J 2009 J. Organomet. Chem. 694 2648

    [31]

    Zheng M M, Ren T Q, Chen G, Kawazoe Y 2014 J. Phys. Chem. C 118(14) 7442

    [32]

    Peng Q, Chen G, Kang L, Mizuseki H, Kawazoe Y 2011 Int. J. Hydrogen Energy 36 12742

    [33]

    Spišák D, Hafner J 2005 Surf. Sci. 582 69

  • [1]

    Schlapbach L, Zttel A 2001 Nature 414 353

    [2]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [3]

    Wu M, Wang Q, Sun Q, Jena P 2013 J. Phys. Chem. C 117 6055

    [4]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [5]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

    [6]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco? M, Zttel A 2013 J. Phys. Chem. C 117 22598

    [7]

    Sano N, Taniguchi K, Tamon H 2014 J. Phys. Chem. C 118(7) 3402

    [8]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [9]

    Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111

    [10]

    Liu X, McGrady G S, Langmi H W, Jensen C M 2009 J. Am. Chem. Soc. 131 5032

    [11]

    Liu Y, Liang C, Zhou H, Gao M, Pan H, Wang Q 2011 Chem. Commun. 47 1740

    [12]

    Zhang H, Xiao M Z, Zhang G Y, Lu G X, Zhu S L 2011 Acta. Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]

    [13]

    Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2010 Chin. Phys. B 19 048601

    [14]

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta. Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]

    [15]

    Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O, Hlil E K 2012 Chin. Phys. B 21 097501

    [16]

    Lozano G A, Ranong C N, Bellosta von Colbe J M, Bormann R, Hapke J, Fieg G, Klassen T, Dornheim M 2012 Int. J. Hydrogen Energy 37 2825

    [17]

    Bogdanović B, Schwickardi M 1997 J. Alloys. Compd. 253 1

    [18]

    Chaudhuri S, Graetz J, Ignatov A, Reilly J J, Muckerman J T 2006 J. Am. Chem. Soc. 128 11404

    [19]

    Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 80

    [20]

    Chaudhuri S, Muckerman J T 2005 J. Phys. Chem. B 109 6952

    [21]

    Wang J, Du Y, Kong Y, Xu H H, Jiang C, Ouyang Y F, Sun L X 2010 Int. J. Hydrogen Energy 35 609

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [24]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978

    [25]

    Henkelman G, Jónsson H 1999 J. Chem. Phys. 111 7010

    [26]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305

    [27]

    Anton D L 2003 J. Alloys. Compd. 356 400

    [28]

    Marashdeh A, Versluis JW I, Valdés Á, Olsen R A, Løvvik O M, Kroes GJ 2013 J. Phys. Chem. C 117(1) 3

    [29]

    Kubas G J 2001 J. Organomet. Chem. 635 37

    [30]

    Kubas G J 2009 J. Organomet. Chem. 694 2648

    [31]

    Zheng M M, Ren T Q, Chen G, Kawazoe Y 2014 J. Phys. Chem. C 118(14) 7442

    [32]

    Peng Q, Chen G, Kang L, Mizuseki H, Kawazoe Y 2011 Int. J. Hydrogen Energy 36 12742

    [33]

    Spišák D, Hafner J 2005 Surf. Sci. 582 69

  • [1] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [2] 曾永志, 朱梓忠, 林秋宝, 李仁全. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [3] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [4] 段满益, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军, 徐 明. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [5] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [6] 胡翠娥, 曾召益, 蔡灵仓. 极端条件下锆的动力学稳定性研究. 物理学报, 2015, 64(4): 046401. doi: 10.7498/aps.64.046401
    [7] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [8] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究 . 物理学报, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [9] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究. 物理学报, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [10] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究. 物理学报, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [11] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [12] 曾永志, 黄美纯. TM掺杂Ⅱ-Ⅳ-Ⅴ2黄铜矿半导体的电磁性质. 物理学报, 2005, 54(4): 1749-1755. doi: 10.7498/aps.54.1749
    [13] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [18] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [19] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [20] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  586
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-01
  • 修回日期:  2014-09-19
  • 刊出日期:  2015-02-05

过渡族金属掺杂Al(111)表面对氢分子催化分解的影响

  • 1. 湘潭大学物理系, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号: 11074212, 11204259, 11374252)和教育部新世纪优秀人才支持计划(批准号: NCET-12-0722)资助的课题.

摘要: 为了探求过渡金属催化剂对催化合成储氢材料NaAlH4效果的影响, 本文采用第一性原理方法研究了多种金属原子取代Al (111)表面铝原子形成的合金表面对氢的催化分解的影响. 计算结果表明, Sc, V, Fe, Ti原子掺杂的表面对氢分子分解具有催化作用. H2在对应的掺杂表面催化分解所需要的活化能分别为0.54 eV, 0.29 eV, 0.51 eV, 0.12 eV. H原子在Sc, V, Ti掺杂表面扩散需要的活化能分别为0.51 eV, 0.66 eV, 0.57 eV. 同时, 过渡金属掺杂在Al表面时倾向于分散分布, 增加掺杂表面的掺杂原子个数, 掺杂表面的催化效果体现为单个掺杂过渡金属原子的催化效果. 本研究将为金属掺杂Al (111)表面催化加氢合成NaAlH4提供理论参考.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回