搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究

王凯 邢艳辉 韩军 赵康康 郭立建 于保宁 邓旭光 范亚明 张宝顺

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究

王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺
PDF
导出引用
导出核心图
  • 利用金属有机物化学气相沉积技术在蓝宝石衬底上制备了掺Fe高阻GaN以及AlGaN/GaN 高电子迁移率晶体管(HEMT)结构. 对Cp2Fe流量不同的高阻GaN特性进行了研究. 研究结果表明, Fe杂质在GaN 材料中引入的Fe3+/2+深受主能级能够补偿背景载流子浓度从而实现高阻, Fe 杂质在GaN 材料中引入更多起受主作用的刃位错, 也在一定程度上补偿了背景载流子浓度. 在一定范围内, GaN 材料方块电阻随Cp2Fe流量增加而增加, Cp2Fe流量为100 sccm时, 方块电阻增加不再明显; 另外增加Cp2Fe流量也会导致材料质量下降, 表面更加粗糙. 因此, 优选Cp2Fe流量为75 sccm, 相应方块电阻高达1 1010 /\Box, 外延了不同掺Fe层厚度的AlGaN/GaN HEMT结构, 并制备成器件. HEMT 器件均具有良好的夹断以及栅控特性, 并且增加掺Fe层厚度使得HEMT器件的击穿电压提高了39.3%, 同时对器件的转移特性影响较小.
      通信作者: 邢艳辉, xingyanhui@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204011, 11204009, 61574011)、北京市自然科学基金(批准号: 4142005)和北京市教委能力提升项目(批准号: PXM2014_014204_07_000018)资助的课题.
    [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [2] 高宏玲, 李东临, 王宝强, 朱战平, 曾一平, 周文政, 商丽燕. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [3] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [4] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [5] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [7] 龚 敏, 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [8] 徐得名, 吕永良, 周世平. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
    [9] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [11] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [12] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [13] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [14] 龚 敏, 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [15] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [16] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [17] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 贾海强, 陈 弘, 周均铭, 刘 建, 刘新宇. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [18] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [19] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [20] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  990
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 修回日期:  2015-10-14
  • 刊出日期:  2016-01-05

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究

  • 1. 北京工业大学电子信息与控制工程学院, 光电子技术省部共建教育部重点实验室, 北京 100124;
  • 2. 中国科学院苏州纳米技术与纳米仿生研究所, 纳米器件与应用重点实验室, 苏州 215123
  • 通信作者: 邢艳辉, xingyanhui@bjut.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61204011, 11204009, 61574011)、北京市自然科学基金(批准号: 4142005)和北京市教委能力提升项目(批准号: PXM2014_014204_07_000018)资助的课题.

摘要: 利用金属有机物化学气相沉积技术在蓝宝石衬底上制备了掺Fe高阻GaN以及AlGaN/GaN 高电子迁移率晶体管(HEMT)结构. 对Cp2Fe流量不同的高阻GaN特性进行了研究. 研究结果表明, Fe杂质在GaN 材料中引入的Fe3+/2+深受主能级能够补偿背景载流子浓度从而实现高阻, Fe 杂质在GaN 材料中引入更多起受主作用的刃位错, 也在一定程度上补偿了背景载流子浓度. 在一定范围内, GaN 材料方块电阻随Cp2Fe流量增加而增加, Cp2Fe流量为100 sccm时, 方块电阻增加不再明显; 另外增加Cp2Fe流量也会导致材料质量下降, 表面更加粗糙. 因此, 优选Cp2Fe流量为75 sccm, 相应方块电阻高达1 1010 /\Box, 外延了不同掺Fe层厚度的AlGaN/GaN HEMT结构, 并制备成器件. HEMT 器件均具有良好的夹断以及栅控特性, 并且增加掺Fe层厚度使得HEMT器件的击穿电压提高了39.3%, 同时对器件的转移特性影响较小.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回