搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于喷墨打印制备发光二极管的ZnO量子点配体研究

宋家宁 毛雨 王俊杰 李丹阳 欧家琦 彭俊彪

引用本文:
Citation:

适用于喷墨打印制备发光二极管的ZnO量子点配体研究

宋家宁, 毛雨, 王俊杰, 李丹阳, 欧家琦, 彭俊彪

Study on ZnO quantum dot ligands for inkjet printing of light-emitting diodes

Song Jia-Ning, Mao Yu, Wang Jun-Jie, Li Dan-Yang, Ou Jia-Qi, Peng Jun-Biao
PDF
HTML
导出引用
  • 喷墨打印工艺具有无接触、材料利用率高、成本较低, 以及可图案化等优势, 是制备全彩量子点显示的关键技术. 迁移率高、材料稳定性好的ZnO量子点薄膜作为电子传输层一直是制备量子点发光二极管的重要材料. 然而, 在ZnO薄膜干燥的过程中, 存在ZnO量子点团聚的问题, 破坏了ZnO薄膜的形貌和厚度均一性, 进而劣化了器件的发光性能. 通常在ZnO量子点合成后需要加入配体乙醇胺来将其稳定分散. 但是研究发现, 当ZnO量子点在空气中干燥成膜时, 其与乙醇胺配体连接的化学键容易断裂, 使ZnO量子点之间发生聚集. 同时氧含量随着时间不断上升, 表明外界的水氧结合在薄膜表面, 进一步加剧了ZnO量子点之间的团聚. 通过使用结合更加紧密的乙二胺四乙酸配体可有效地改善该现象, 制备出形貌良好、厚度均匀的ZnO薄膜, 进而制备出高效稳定的喷墨打印量子点发光二极管.
    Inkjet printing as a contact-free, high material utilization, low cost, patternable solution processing technology, may become the future color quantum-dot light-emitting diodes (QLED) production of the key technology. However, owing to the existence of the pixel structure of the substrate array, the film prepared by inkjet printing technology is not so smooth and uniform as that by spin coating technology, which affects the luminescence performance of the device. Therefore, it is necessary to study the film forming mechanism and process of inkjet printing. In order to solve the above problems, this paper focuses on the material and process problems of preparing high-quality electronic transport layer ZnO thin films by inkjet printing. From the perspective of ligand, the ZnO quantum dot material, which is an indispensable electron transport layer, is optimized to prepare the thin films with good morphology and stability in air, and the methods to improve the performances of inkjet printing QLED devices are explored. Firstly, the drying process and influence mechanism of ZnO quantum dot ink in air are investigated. As the thickness of ZnO quantum dot film prepared by inkjet printing increases, the film becomes loose and the surface becomes rough with the continuous extension of the time in the air. These changes make the efficiency of the QLED device decrease and the luminous region uneven. The reason for this phenomenon is that after the ZnO quantum dots are printed into the pixel pit, the random Brownian motion of quantum dots will continue in the process of solvent evaporation. In this process, the ligand ethanolamine connected to the surface of ZnO quantum dots will fall off with the movement and cannot play the role in dispersing the quantum dots. Besides, the external water oxygen and carbon dioxide attach to the film. The combination between the two effects makes the ZnO quantum dots aggregate into large particles and the film becomes loose and porous. In this paper, we use ethylenediamine tetraacetic acid (EDTA) as ligand to synthesize ZnO quantum dots, which can effectively improve this phenomenon. The carboxyl group at the end of EDTA is more stable in connection with ZnO quantum dots. Moreover, the EDTA has multiple branch chains, which makes it have steric hindrance effect and can disperse ZnO effectively. A smooth and compact film with a roughness of 1.97 nm is prepared by inkjet printing. After 40 min exposure to air, the film is still able to maintain a stable morphology. Then, based on the EDTA-ZnO quantum dots synthesized above, red QLED devices with optimized performance are prepared. The current efficiency of the spin-coating device is 16.8 cd/A, which is better than that of the ZnO quantum dots before modification. The EDTA ligand passivates the surface defects of ZnO, alleviates the quenching phenomenon when contacting red quantum dots, and improves the fluorescence quantum efficiency and transient fluorescence lifetime of quantum dots on the electron transport layer. In addition, the EDTA regulates the carrier transport performance, making the carrier recombination of the device more balanced. In the inkjet printing device, the improvement of device morphology plays a leading role in improving the performance. The inkjet printing QLED based on EDTA-ZnO achieves a current efficiency of 9.24 cd/A, and maintains a current efficiency of 6.82 cd/A after 40 min in air, which are 23% and 89% higher than those of the control device. This work provides a reference for solving the problems of film thickness increase and morphology variation caused by particle agglomeration in the preparation of large area devices in inkjet printing.
      通信作者: 彭俊彪, psjbpeng@scut.edu.cn
    • 基金项目: 广东省重点领域研发计划(批准号: 2022B0303010001)资助的课题.
      Corresponding author: Peng Jun-Biao, psjbpeng@scut.edu.cn
    • Funds: Project supported by the Research and Development Program in Key Areas of Guangdong Province, China (Grant No. 2022B0303010001).
    [1]

    Pidluzhna А, Ivaniuk K, Stakhira P, Hotra Z, Chapran M, Ulanski J, Tynkevych O, Khalavka Y, Baryshnikov G V, Minaev B F, Ågren H 2019 Dyes Pigm. 162 647Google Scholar

    [2]

    Nguyen H T, Duong A T, Lee S 2021 J. Mater. Res. 36 3309Google Scholar

    [3]

    Sun J, Wang H, Shi H, Wang S, Xu J, Ma J, Ma B, Wen M, Li J, Zhao J, Liu H, Wang Y, Jiang L 2020 ACS Appl. Mater. Interfaces 12 48820Google Scholar

    [4]

    Song J, Wang O, Shen H, Lin Q, Li Z, Wang L, Zhang X, Li L S 2019 Adv. Funct. Mater. 29 1808377Google Scholar

    [5]

    Kim T, Kim K H, Kim S, Choi S M, Jang H, Seo H K, Lee H, Chung D Y, Jang E 2020 Nature 586 385Google Scholar

    [6]

    Zhang W, Ding S, Zhuang W, Wu D, Liu P, Qu X, Liu H, Yang H, Wu Z, Wang K, Sun X W 2020 Adv. Funct. Mater. 30 2005303Google Scholar

    [7]

    Giuri A, Saleh E, Listorti A, Colella S, Rizzo A, Tuck C, Corcione C E 2019 Nanomaterials 9 582Google Scholar

    [8]

    Han Y J, Kang K T, Cho K H 2021 ACS Appl. Mater. Interfaces 13 50111Google Scholar

    [9]

    Chen M, Xie L, Wei C, Yi Y Q Q, Chen X, Yang J, Zhuang J, Li F, Su W, Cui Z 2021 Nano Res. 14 4125Google Scholar

    [10]

    Zhan S, Suh Y H, Fan X B, Yang J, Ni L, Kim Y, Jo J W, Choi H W, Jung S M, Shin D W, Lee S, Kim J M 2022 J. Soc. Inf. Display 30 748Google Scholar

    [11]

    Yang P, Zhang L, Kang D J, Strahl R, Kraus T 2020 Adv. Opt. Mater. 8 1901429Google Scholar

    [12]

    Xiong X, Wei C, Xie L, Chen M, Tang P, Shen W, Deng Z, Li X, Duan Y, Su W, Zeng H, Cui Z 2019 Org. Electron. 73 247Google Scholar

    [13]

    Liu Y, Li F, Xu Z, Zheng C, Guo T, Xie X, Qian L, Fu D, Yan X 2017 ACS Appl. Mater. Interfaces 9 25506Google Scholar

    [14]

    Han J, Ko D, Park M, Roh J, Jung H, Lee Y, Kwon Y, Sohn J, Bae W K, Chin B D, Lee C 2016 J. Soc. Inf. Display 24 545Google Scholar

    [15]

    Adnan R H, Woon K L, Chanlek N, Nakajima H, Abd Majid W H 2017 Aust. J. Chem. 70 1110Google Scholar

    [16]

    Wang Q, Sun Q, Jena P 2008 J. Chem. Phys. 129 164714Google Scholar

    [17]

    Wu Y, Li X, Wei S, Liu Y, Ma M Y, Huang L J, Pan D C 2019 Mater. Res. Express 6 085060Google Scholar

    [18]

    Fragalà M E, Aleeva Y, Malandrino G 2010 Superlattices Microstruct. 48 408Google Scholar

    [19]

    Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller M R, Matyjaszewski K 2016 Langmuir 32 13207Google Scholar

    [20]

    Zanjani S M, Tintori F, Sadeghi S, Linkov P, Dayneko S, Shahalizad A, Pahlevaninezhad H, Pahlevani M 2022 Adv. Photonics Res. 3 2200159Google Scholar

    [21]

    Lee Y, Jeong B G, Roh H, Roh J, Han J, Lee D C, Bae W K, Kim J Y, Lee C 2018 Adv. Quantum Technol. 1 1700006Google Scholar

    [22]

    Chen H, Ding K, Fan L, Zhang R, Guo R, Zhang J, Hou L, Wang L 2022 J. Mater. Chem. C 10 8373Google Scholar

    [23]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [24]

    Jo Y J, Kim S Y, Hyun J H, Park B, Choy S, Koirala G R, Kim T I 2022 Npj Flexible Electron. 6 31Google Scholar

    [25]

    Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Vassilev S, Dushkin C 2010 J. Alloys Compd. 500 252Google Scholar

    [26]

    Moreira N H, Domıinguez A, Frauenheim T, da Rosa A L 2012 Phys. Chem. Chem. Phys. 14 15445Google Scholar

    [27]

    Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F 2015 Adv. Energy Mater. 5 1401606Google Scholar

    [28]

    Li X, Liu X, Zhang W, Wang H Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [29]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661Google Scholar

    [30]

    Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S, Liu R S 2017 Small 13 1603962Google Scholar

  • 图 1  (a) 发光器件结构示意图; (b) 喷墨打印示意图

    Fig. 1.  (a) Structure of the light-emitting device; (b) diagram of the inkjet printing process.

    图 2  (a) 打印完成5 min后的显微镜照片; (b) 像素坑中薄膜厚度. 薄膜的AFM图像 (c) 直接进行真空干燥与退火处理; (d) 空气放置40 min后进行干燥退火处理. (e), (f) 所制备的QLED器件在3.8 V工作电压下的电致发光显微镜照片

    Fig. 2.  (a) Microscope photos for 5 min after printing; (b) film thickness in pixel pit. AFM image of the film: (c) Directly vacuum drying and annealing treatment; (d) air placement for 40 min and dry annealing treatment. (e), (f) Electroluminescence microscope photos of the QLED device at 3.8 V operating voltage

    图 3  (a)—(c) ZnO薄膜中N, Zn, O元素在氩刻蚀(≈10 nm深度)的XPS光谱. N元素的402.3 eV处峰位面积 (d)与O元素的532 eV峰位面积 (e)随在空气中放置时间的变化(已进行归一化处理)

    Fig. 3.  (a)–(c) XPS spectra of N, Zn and O elements in ZnO films before and after argon etching (≈10 nm depth). Peak area at 402.3 eV of element N (d) and 532 eV of element O (e) as a function of time in air (Normalized).

    图 4  ZnO量子点与EDTA-ZnO量子点的TEM图(a), (c)与粒径分布图(b), (d)

    Fig. 4.  TEM images of ZnO quantum dots and EDTA-ZnO quantum dots (a), (c), Particle size distribution (b), (d).

    图 5  EDTA-ZnO打印薄膜在直接真空干燥退火与空气中放置40 min后干燥退火 表面轮廓仪图像(a)与AFM图像(d), (e); (b) EDTA-ZnO薄膜中的O元素在氩刻蚀(≈10 nm深度)的XPS光谱; (c) ZnO与EDTA-ZnO薄膜的水接触角随时间变化曲线

    Fig. 5.  Surface profilers image (a) and AFM image (d), (e) of EDTA-ZnO printed film after direct vacuum drying annealing and 40 minutes of drying annealing in air; (b) XPS spectra of O elements in EDTA-ZnO films etched with argon at ≈10 nm depth; (c) water contact angle curve of ZnO and EDTA-ZnO films with time.

    图 6  (a) ZnO与EDTA-ZnO薄膜的PL发射谱图; 红光量子点分别在石英基板、ZnO基板、EDTA-ZnO基板上旋涂成膜后的PLQY对比(b)和TRPL曲线(c)

    Fig. 6.  (a) PL emission spectra of ZnO and EDTA-ZnO films; PLQY contrast (b) and TRPL curves (c) of red quantum dots coated on quartz substrate, ZnO substrate and EDTA-ZnO substrate.

    图 7  ZnO与EDTA-ZnO薄膜旋涂器件的J-V-L曲线(a)和CE-L曲线(b); (c) 单载流子器件的J-V曲线; ZnO与EDTA-ZnO薄膜在分别在直接真空干燥退火与空气中放置40 min后干燥退火两种条件下制备喷墨打印器件的J-V-L曲线(d), CE-L曲线(e)以及电致发光显微镜照片(f), (g)

    Fig. 7.  J-V-L curves (a) and CE-L curves (b) of ZnO and EDTA-ZnO thin film spin coating device; (c) J-V curves of single carrier device; J-V-L curves (d), CE-L curves (e), electroluminescence microscope photos (f), (g) of inkjet printing devices prepared by ZnO and EDTA-ZnO thin films after direct vacuum drying annealing and drying annealing in air for 40 min.

    表 1  不同条件下的ZnO薄膜中的O和Zn元素含量比

    Table 1.  Content ratio of O and Zn elements in ZnO thin films under different conditions.

    In vacuum30 min
    in air
    60 min
    in air
    30 min
    in N2
    O/Zn1.322.012.481.13
    下载: 导出CSV

    表 2  不同 ETLs 上的 RQDs 瞬态荧光寿命拟合参数

    Table 2.  Transient fluorescence lifetime fitting parameters of RQDs on different ETLs.

    Sampleτau/nsA1τ1/nsA2τ2/ns
    Quartz/QDs62.903515.366489.86
    ZnO/QDs51.144312.545680.31
    EDTA-ZnO/QDs59.613613.676386.34
    下载: 导出CSV

    表 3  ZnO与EDTA-ZnO薄膜在分别在真空干燥退火与空气中放置40 min后干燥退火两种条件下制备喷墨打印器件的性能

    Table 3.  Performance of inkjet printing devices prepared by ZnO and EDTA-ZnO films after drying annealing in vacuum and drying annealing after 40 min in air.

    ETLVon/VCEmax/
    (cd·A–1)
    Lmax/
    (cd·m–2)
    ZnO2.27.5453773
    EDTA-ZnO2.29.2464373
    ZnO (40 min in air)2.83.5921474
    EDTA-ZnO
    (40 min in air)
    2.26.8222592
    下载: 导出CSV
  • [1]

    Pidluzhna А, Ivaniuk K, Stakhira P, Hotra Z, Chapran M, Ulanski J, Tynkevych O, Khalavka Y, Baryshnikov G V, Minaev B F, Ågren H 2019 Dyes Pigm. 162 647Google Scholar

    [2]

    Nguyen H T, Duong A T, Lee S 2021 J. Mater. Res. 36 3309Google Scholar

    [3]

    Sun J, Wang H, Shi H, Wang S, Xu J, Ma J, Ma B, Wen M, Li J, Zhao J, Liu H, Wang Y, Jiang L 2020 ACS Appl. Mater. Interfaces 12 48820Google Scholar

    [4]

    Song J, Wang O, Shen H, Lin Q, Li Z, Wang L, Zhang X, Li L S 2019 Adv. Funct. Mater. 29 1808377Google Scholar

    [5]

    Kim T, Kim K H, Kim S, Choi S M, Jang H, Seo H K, Lee H, Chung D Y, Jang E 2020 Nature 586 385Google Scholar

    [6]

    Zhang W, Ding S, Zhuang W, Wu D, Liu P, Qu X, Liu H, Yang H, Wu Z, Wang K, Sun X W 2020 Adv. Funct. Mater. 30 2005303Google Scholar

    [7]

    Giuri A, Saleh E, Listorti A, Colella S, Rizzo A, Tuck C, Corcione C E 2019 Nanomaterials 9 582Google Scholar

    [8]

    Han Y J, Kang K T, Cho K H 2021 ACS Appl. Mater. Interfaces 13 50111Google Scholar

    [9]

    Chen M, Xie L, Wei C, Yi Y Q Q, Chen X, Yang J, Zhuang J, Li F, Su W, Cui Z 2021 Nano Res. 14 4125Google Scholar

    [10]

    Zhan S, Suh Y H, Fan X B, Yang J, Ni L, Kim Y, Jo J W, Choi H W, Jung S M, Shin D W, Lee S, Kim J M 2022 J. Soc. Inf. Display 30 748Google Scholar

    [11]

    Yang P, Zhang L, Kang D J, Strahl R, Kraus T 2020 Adv. Opt. Mater. 8 1901429Google Scholar

    [12]

    Xiong X, Wei C, Xie L, Chen M, Tang P, Shen W, Deng Z, Li X, Duan Y, Su W, Zeng H, Cui Z 2019 Org. Electron. 73 247Google Scholar

    [13]

    Liu Y, Li F, Xu Z, Zheng C, Guo T, Xie X, Qian L, Fu D, Yan X 2017 ACS Appl. Mater. Interfaces 9 25506Google Scholar

    [14]

    Han J, Ko D, Park M, Roh J, Jung H, Lee Y, Kwon Y, Sohn J, Bae W K, Chin B D, Lee C 2016 J. Soc. Inf. Display 24 545Google Scholar

    [15]

    Adnan R H, Woon K L, Chanlek N, Nakajima H, Abd Majid W H 2017 Aust. J. Chem. 70 1110Google Scholar

    [16]

    Wang Q, Sun Q, Jena P 2008 J. Chem. Phys. 129 164714Google Scholar

    [17]

    Wu Y, Li X, Wei S, Liu Y, Ma M Y, Huang L J, Pan D C 2019 Mater. Res. Express 6 085060Google Scholar

    [18]

    Fragalà M E, Aleeva Y, Malandrino G 2010 Superlattices Microstruct. 48 408Google Scholar

    [19]

    Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller M R, Matyjaszewski K 2016 Langmuir 32 13207Google Scholar

    [20]

    Zanjani S M, Tintori F, Sadeghi S, Linkov P, Dayneko S, Shahalizad A, Pahlevaninezhad H, Pahlevani M 2022 Adv. Photonics Res. 3 2200159Google Scholar

    [21]

    Lee Y, Jeong B G, Roh H, Roh J, Han J, Lee D C, Bae W K, Kim J Y, Lee C 2018 Adv. Quantum Technol. 1 1700006Google Scholar

    [22]

    Chen H, Ding K, Fan L, Zhang R, Guo R, Zhang J, Hou L, Wang L 2022 J. Mater. Chem. C 10 8373Google Scholar

    [23]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [24]

    Jo Y J, Kim S Y, Hyun J H, Park B, Choy S, Koirala G R, Kim T I 2022 Npj Flexible Electron. 6 31Google Scholar

    [25]

    Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Vassilev S, Dushkin C 2010 J. Alloys Compd. 500 252Google Scholar

    [26]

    Moreira N H, Domıinguez A, Frauenheim T, da Rosa A L 2012 Phys. Chem. Chem. Phys. 14 15445Google Scholar

    [27]

    Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F 2015 Adv. Energy Mater. 5 1401606Google Scholar

    [28]

    Li X, Liu X, Zhang W, Wang H Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [29]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661Google Scholar

    [30]

    Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S, Liu R S 2017 Small 13 1603962Google Scholar

  • [1] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系. 物理学报, 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 屈俊夫, 冯元伟, 耿力东, 李洪涛. 杆箍缩二极管阳极杆粒子生成模型研究. 物理学报, 2022, 71(22): 225203. doi: 10.7498/aps.71.20221136
    [4] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [5] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [6] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [7] 孙立志, 赵谡玲, 徐征, 尹慧丽, 张成文, 龙志娟, 洪晓霞, 王鹏, 徐叙瑢. 基于量子点和MEH-PPV的白光发光二极管的研究. 物理学报, 2016, 65(6): 067301. doi: 10.7498/aps.65.067301
    [8] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [9] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [10] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [11] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管. 物理学报, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [12] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [13] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [14] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应. 物理学报, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [15] 顾晓玲, 郭 霞, 吴 迪, 李一博, 沈光地. 表面InGaN厚度对GaN基发光二极管特性的影响. 物理学报, 2008, 57(2): 1220-1223. doi: 10.7498/aps.57.1220
    [16] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [17] 张剑铭, 邹德恕, 刘思南, 徐 晨, 沈光地. 新型全方位反射铝镓铟磷薄膜发光二极管. 物理学报, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [18] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究. 物理学报, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
计量
  • 文章访问数:  1684
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-05-09
  • 上网日期:  2023-05-10
  • 刊出日期:  2023-07-05

/

返回文章
返回