搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚稳态液膜空化的长程疏水力作用机制

包西程 邢耀文 张凡凡 张德轲 刘秦杉 杨海昌 桂夏辉

引用本文:
Citation:

基于亚稳态液膜空化的长程疏水力作用机制

包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉

Mechanism of long-range hydrophobic force based on cavitation of metastable liquid film

Bao Xi-Cheng, Xing Yao-Wen, Zhang Fan-Fan, Zhang De-Ke, Liu Qin-Shan, Yang Hai-Chang, Gui Xia-Hui
PDF
HTML
导出引用
  • 疏水力作为胶体物理化学及生物大分子体系中重要作用力, 具有典型的多尺度作用程特征, 其中亚稳态液膜空化气泡桥接诱发长程疏水力和固液界面水分子重排熵效应诱导短程疏水力假说占据着当前学术主流, 但仍缺少系统理论研究. 为进一步阐明基于亚稳态液膜空化的长程疏水力作用机制, 借助原子力显微镜(AFM)及分子动力学模拟对全氟辛基三氯硅烷疏水化颗粒与表面间长程疏水力进行了系统研究. AFM力测试结果表明: 长程疏水力作用程随接近次数增加而逐渐增大并逐渐趋于稳定, 第十次接触时进针曲线跳入黏附距离达到502.01 nm, 退针曲线中观察到了预示空化气泡毛细桥断裂的台阶. 此外, 发现经典毛细力数学模型可以较好地拟合进针曲线, 通过计算得到毛细桥体积约为0.30 μm3, 从理论角度直接验证了亚稳态液膜空化气泡毛细桥的存在. 进一步借助GROMACS (GROningen MAchine for Chemical Simulations)大尺度牵引分子动力学模拟从分子尺度探索疏水颗粒分离过程中空化气泡毛细桥产生、演化过程与力学行为的内在关联机制, 结果表明: 疏水颗粒从基板表面跳出分离瞬间, 产生的局部压降吸引氮气分子向液膜内部扩散从而形成空化气泡毛细桥, 同时, 在毛细桥断裂时刻在计算弹簧势力曲线中观察到了力跳跃行为. 最后研究了溶液气体含量对长程疏水力的影响规律, 发现气体分子含量和空化气泡毛细桥体积增长速率与毛细桥拉伸断裂长度呈现正相关关系, 进一步表明了长程疏水力的气体浓度依赖效应. 基于亚稳态液膜空化的长程疏水力作用机制的揭示有助于进一步完善胶体物理化学及生物大分子间相互作用理论体系, 同时对调控实际矿物浮选过程具有重要指导意义.
    Hydrophobic force, a key driving force in colloid physicochemical system and biological macromolecular system, exhibits a distinct multi-scale effect. The prevailing scholarly consensus attributes long-range hydrophobic force to bubble bridging, facilitated by unstable liquid film cavitation, while short-range force is thought to arise from the reorganization of water molecules at the solid-liquid interface. However, a comprehensive theoretical study remains elusive. To further elucidate the mechanism of the long-range hydrophobic force based on unstable liquid film cavitation, we carry out systematic research on the long-range hydrophobic force between perfluorooctyl trichlorosilane hydrophobic particles and the surface, by utilizing atomic force microscopy (AFM) and molecular dynamics simulations. According to AFM force tests, the long-range hydrophobic force escalates incrementally with subsequent close contacts before reaching a plateau. On the tenth contact, the penetration curve exhibits a sudden jump to an adhesion distance of 502.01 nm. A distinct step in the retraction curve suggests the rupture of the cavitation bubble capillary bridge. Importantly, the classical capillary force mathematical model provides an effective fit for the penetration curve. Our calculations estimate the volume of the capillary bridge at 0.30 μm³, offering direct theoretical evidence of the unstable liquid film cavitation bubble capillary bridge. Further insights are gained from large-scale tensile molecular dynamics simulations by using GROningen MAchine for Chemical Simulations (GROMACS). The inherent correlation mechanism of the formation, evolution, and mechanical behavior of the cavitation bubble capillary bridge in the separation process of hydrophobic particles are further explored from a molecular perspective. The results demonstrate that the local pressure drop occurring at the moment of “jump-out” separation of the hydrophobic particles attracts nitrogen molecules to diffuse into the liquid film, thereby forming a cavitation bubble capillary bridge. Simultaneously, a jumping behavior is observed in the calculated spring potential curve at the moment of capillary bridge rupture. Finally, the influence of solution gas content on long-range hydrophobic force is investigated. There is a positive correlation between gas molecule content and both the growth rate of cavitation bubble capillary bridge volume and the length of capillary bridge stretch-rupture, further demonstrating the gas concentration dependence of long-range hydrophobic forces. In a word, revealing the long-range hydrophobic force mechanism based on the cavitation of unstable liquid film can enhance our understanding of the interaction between colloid physical chemistry and biological macromolecules. Meanwhile, hydrophobic force is the fundamental driving force of particle-bubble adhesion in mineral flotation system, and the revelation of its action mechanism has important guiding significance for regulating the actual mineral flotation process.
      通信作者: 邢耀文, cumtxyw@126.com
    • 基金项目: 国家自然科学基金(批准号: 52274278, 51920105007)资助的课题.
      Corresponding author: Xing Yao-Wen, cumtxyw@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52274278, 51920105007).
    [1]

    马红孺 2016 物理学报 65 184701Google Scholar

    Ma H R 2016 Acta Phys. Sin. 65 184701Google Scholar

    [2]

    Nikolov A, Lee J, Wasan D 2023 Adv. Colloid Interface Sci. 313 102847Google Scholar

    [3]

    彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 物理学报 70 044701Google Scholar

    Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar

    [4]

    赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar

    Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L, Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar

    [5]

    Li Q, Liao C, Hou J, Wang W, Zhang J 2022 Fuel 316 123271Google Scholar

    [6]

    顾帼华, 锁军, 柳建设, 钟素姣 2006 中国有色金属学报 16 1462Google Scholar

    Gu G H, Suo J, Liu J S, Zhong S J 2006 Chin. J. of Nonferrous Met. 16 1462Google Scholar

    [7]

    张天辉, 曹镜声, 梁颖, 刘向阳 2016 物理学报 65 176401Google Scholar

    Zhang T H, Cao J S, Liang Y, Liu X Y 2016 Acta Phys. Sin. 65 176401Google Scholar

    [8]

    邢耀文, 桂夏辉, 曹亦俊, 刘炯天 2019 煤炭学报 44 3185Google Scholar

    Xing Y W, Gui X H, Cao Y J, Liu J T 2019 J. China Coal Soc. 44 3185Google Scholar

    [9]

    蒋昊, 罗汇丰, 谢佳辉, 韩文平 2022 中国有色金属学报 32 545Google Scholar

    Jiang H, Liu H F, Xie J H, Han W P 2022 Chin. J. of Nonferrous Met. 32 545Google Scholar

    [10]

    Christenson H K, Claesson P M 2001 Adv. Colloid Interface Sci. 91 391Google Scholar

    [11]

    Meyer E E, Rosenberg K J, Israelachvili J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 15739Google Scholar

    [12]

    Kékicheff P 2019 Adv. Colloid Interface Sci. 270 191Google Scholar

    [13]

    王市委, 陈松降, 陶秀祥, 石开仪, 陈鹏, 陈文辉 2019 煤炭学报 44 2236Google Scholar

    Wang S W, Chen S J, Tao X X, Shi K Y, Chen P, Chen W H 2019 J. China Coal Soc. 44 2236Google Scholar

    [14]

    Christensen H, Claesson P 1988 Science 239 390Google Scholar

    [15]

    Yakubov G E, Butt H J, Vinogradova O I 2000 J. Phys. Chem. B 104 3407Google Scholar

    [16]

    Azadi M, Nguyen A V, Yakubov G E 2015 Langmuir 31 1941Google Scholar

    [17]

    Faghihnejad A, Zeng H 2012 Soft Matter 8 2746Google Scholar

    [18]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [19]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33Google Scholar

    [20]

    Yang H, Zhang F, Xing Y, Gui X, Cao Y 2022 Front. Mater. 8 644Google Scholar

    [21]

    Pandit S, Maroli N, Naskar S, Khatri B, Maiti P K, De M 2022 Nanoscale 14 7881Google Scholar

    [22]

    Wang X, Ramírez-Hinestrosa S, Dobnikar J, Frenkel D 2020 Phys. Chem. Chem. Phys. 22 10624Google Scholar

    [23]

    Vassetti D, Pagliai M, Procacci P 2019 J. Chem. Theory Comput. 15 1983Google Scholar

    [24]

    Potoff J J, Ilja Siepmann J 2001 AIChE J. 47 1676Google Scholar

    [25]

    Sedighi M, Talaie M R, Sabzyan H, Aghamiri S, Chen P 2022 Fuel 308 121965Google Scholar

    [26]

    Xia Y C, Zhang R, Cao Y J, Xing Y W, Gui X H 2020 Fuel 262 116535Google Scholar

    [27]

    Zimmermann K 1991 J. Comput. Chem. 12 310Google Scholar

    [28]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 14101Google Scholar

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [30]

    Hammer M U, Anderson T H, Chaimovich A, Shell M S, Israelachvili J 2010 Faraday Discuss. 146 299Google Scholar

    [31]

    Mezger M, Reichert H, Schöder S, Okasinski J, Schröder H, Dosch H, Palms D, Ralston J, Honkimäki V 2006 Proc. Natl. Acad. Sci. U. S. A. 103 18401Google Scholar

    [32]

    Butt H J, Kappl M 2009 Adv. Colloid Interface Sci. 146 48Google Scholar

    [33]

    Brown D, Neyertz S 1995 Molecular Physics 84 577Google Scholar

  • 图 1  玻璃载玻片表面形貌图

    Fig. 1.  Surface topography of glass.

    图 2  玻璃微球的SEM照片

    Fig. 2.  SEM photos of glass microspheres.

    图 3  (a)胶体探针及(b)玻璃载玻片疏水化后表面接触角图像

    Fig. 3.  (a) Colloidal probes and (b) surface contact angle images of glass slides after hydrophobicization.

    图 4  疏水力测量实验示意图

    Fig. 4.  Schematic diagram of hydrophobic measurement test

    图 5  空化现象分子动力学模拟初始构型

    Fig. 5.  Initial configuration of cavitation phenomenon in molecular dynamics simulation.

    图 6  水溶液下疏水化基板表面AFM扫描结果 (a)表面形貌; (b)表面粗糙度扫描曲线

    Fig. 6.  AFM scanning results of hydrophobic substrate surface in aqueous solution: (a) Surface topography; (b) surface roughness scanning curve.

    图 7  空气下疏水化基板表面AFM扫描结果 (a)表面形貌; (b)表面粗糙度扫描曲线

    Fig. 7.  AFM scanning results of hydrophobic substrate surface under air: (a) Surface topography; (b) surface roughness scanning curve

    图 8  不同接近次数下的疏水颗粒与基板间相互作用力(进针曲线) (a)位置1; (b)位置2; (c)位置3; (d)位置4

    Fig. 8.  Interaction between hydrophobic particles and substrate under different approaching times (approach curves): (a) Position 1; (b) position 2; (c) position 3; (d) position 4.

    图 9  不同接近次数下的疏水颗粒与基板间相互作用力(退针曲线) (a)位置1; (b)位置2; (c)位置3; (d)位置4

    Fig. 9.  Interaction between hydrophobic particles and substrate under different approaching times (retraction curves): (a) Position 1; (b) position 2; (c) position 3; (d) position 4.

    图 10  部分脱气处理条件下, 不同接近次数时疏水颗粒与基板间的相互作用力

    Fig. 10.  Interaction force between hydrophobic particles and substrate at different approaching times under the condition of partial degassing treatment.

    图 11  不同接近次数下进针跳入黏附距离变化

    Fig. 11.  Variation of adhesive distance upon penetration at different approaching cycles.

    图 12  毛细桥几何关系图[32]

    Fig. 12.  Geometric diagram of capillary bridge[32].

    图 13  空化气泡的毛细力模型拟合结果

    Fig. 13.  Fitting results of the capillary force model for cavitation bubbles.

    图 14  分离距离随模拟时间的变化曲线

    Fig. 14.  Curve of separation distance as a function of simulation time.

    图 15  不同气体含量对分离过程拉力的影响

    Fig. 15.  Impact of different gas contents on the tensile force during the separation process.

    图 16  分离过程空化气泡毛细桥体积随分离距离的变化

    Fig. 16.  Volume variation of cavitation capillary bridges during the separation process as a function of separation distance.

    图 17  空化气泡毛细桥断裂前后分子动力学模拟结果 (a) 无气体分子; (b) 100气体分子; (c) 200气体分子

    Fig. 17.  Molecular dynamics simulation results before and after cavitation capillary bridge rupture: (a) No gas molecules; (b) 100 gas molecules; (c) 200 gas molecules.

    图 18  基于亚稳态液膜空化的长程疏水力作用机制

    Fig. 18.  Long-range hydrophobic mechanism based on metastable liquid film cavitation.

  • [1]

    马红孺 2016 物理学报 65 184701Google Scholar

    Ma H R 2016 Acta Phys. Sin. 65 184701Google Scholar

    [2]

    Nikolov A, Lee J, Wasan D 2023 Adv. Colloid Interface Sci. 313 102847Google Scholar

    [3]

    彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 物理学报 70 044701Google Scholar

    Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar

    [4]

    赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar

    Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L, Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar

    [5]

    Li Q, Liao C, Hou J, Wang W, Zhang J 2022 Fuel 316 123271Google Scholar

    [6]

    顾帼华, 锁军, 柳建设, 钟素姣 2006 中国有色金属学报 16 1462Google Scholar

    Gu G H, Suo J, Liu J S, Zhong S J 2006 Chin. J. of Nonferrous Met. 16 1462Google Scholar

    [7]

    张天辉, 曹镜声, 梁颖, 刘向阳 2016 物理学报 65 176401Google Scholar

    Zhang T H, Cao J S, Liang Y, Liu X Y 2016 Acta Phys. Sin. 65 176401Google Scholar

    [8]

    邢耀文, 桂夏辉, 曹亦俊, 刘炯天 2019 煤炭学报 44 3185Google Scholar

    Xing Y W, Gui X H, Cao Y J, Liu J T 2019 J. China Coal Soc. 44 3185Google Scholar

    [9]

    蒋昊, 罗汇丰, 谢佳辉, 韩文平 2022 中国有色金属学报 32 545Google Scholar

    Jiang H, Liu H F, Xie J H, Han W P 2022 Chin. J. of Nonferrous Met. 32 545Google Scholar

    [10]

    Christenson H K, Claesson P M 2001 Adv. Colloid Interface Sci. 91 391Google Scholar

    [11]

    Meyer E E, Rosenberg K J, Israelachvili J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 15739Google Scholar

    [12]

    Kékicheff P 2019 Adv. Colloid Interface Sci. 270 191Google Scholar

    [13]

    王市委, 陈松降, 陶秀祥, 石开仪, 陈鹏, 陈文辉 2019 煤炭学报 44 2236Google Scholar

    Wang S W, Chen S J, Tao X X, Shi K Y, Chen P, Chen W H 2019 J. China Coal Soc. 44 2236Google Scholar

    [14]

    Christensen H, Claesson P 1988 Science 239 390Google Scholar

    [15]

    Yakubov G E, Butt H J, Vinogradova O I 2000 J. Phys. Chem. B 104 3407Google Scholar

    [16]

    Azadi M, Nguyen A V, Yakubov G E 2015 Langmuir 31 1941Google Scholar

    [17]

    Faghihnejad A, Zeng H 2012 Soft Matter 8 2746Google Scholar

    [18]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [19]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33Google Scholar

    [20]

    Yang H, Zhang F, Xing Y, Gui X, Cao Y 2022 Front. Mater. 8 644Google Scholar

    [21]

    Pandit S, Maroli N, Naskar S, Khatri B, Maiti P K, De M 2022 Nanoscale 14 7881Google Scholar

    [22]

    Wang X, Ramírez-Hinestrosa S, Dobnikar J, Frenkel D 2020 Phys. Chem. Chem. Phys. 22 10624Google Scholar

    [23]

    Vassetti D, Pagliai M, Procacci P 2019 J. Chem. Theory Comput. 15 1983Google Scholar

    [24]

    Potoff J J, Ilja Siepmann J 2001 AIChE J. 47 1676Google Scholar

    [25]

    Sedighi M, Talaie M R, Sabzyan H, Aghamiri S, Chen P 2022 Fuel 308 121965Google Scholar

    [26]

    Xia Y C, Zhang R, Cao Y J, Xing Y W, Gui X H 2020 Fuel 262 116535Google Scholar

    [27]

    Zimmermann K 1991 J. Comput. Chem. 12 310Google Scholar

    [28]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 14101Google Scholar

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [30]

    Hammer M U, Anderson T H, Chaimovich A, Shell M S, Israelachvili J 2010 Faraday Discuss. 146 299Google Scholar

    [31]

    Mezger M, Reichert H, Schöder S, Okasinski J, Schröder H, Dosch H, Palms D, Ralston J, Honkimäki V 2006 Proc. Natl. Acad. Sci. U. S. A. 103 18401Google Scholar

    [32]

    Butt H J, Kappl M 2009 Adv. Colloid Interface Sci. 146 48Google Scholar

    [33]

    Brown D, Neyertz S 1995 Molecular Physics 84 577Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [5] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [6] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [7] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [8] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [9] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [10] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [11] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [12] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [13] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [14] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [15] 刘秀梅, 赵 瑞, 贺 杰, 陆 建, 倪晓武. 10-6—10-4m2/s黏度液体中靶受力学作用的测试与分析. 物理学报, 2007, 56(11): 6508-6513. doi: 10.7498/aps.56.6508
    [16] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  808
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-10-17
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-05

/

返回文章
返回