搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类相对转动时滞非线性动力系统的稳定性分析

刘浩然 朱占龙 时培明

一类相对转动时滞非线性动力系统的稳定性分析

刘浩然, 朱占龙, 时培明
PDF
导出引用
  • 建立了具有时变刚度、非线性阻尼和谐波激励的一类相对转动时滞非线性动力系统的动力学方程.采用多尺度法推导出时滞动力系统的分岔响应方程,运用奇异性理论研究系统结构稳定性,得到主共振稳态响应方程的转迁集以及不同参数下分岔曲线的拓扑结构.应用Hopf分岔理论讨论了时滞动力系统动态稳定性,给出了系统产生极限环的条件,最后用数值模拟的方法研究了时滞参数对系统极限环幅值的影响.
    • 基金项目: 国家重大技术装备研制项目科技攻关计划(批准号: ZZ02-13B-02-03-1)和河北省自然科学基金(批准号: F2010001317,E2010001262)资助的课题.
    [1]

    Carmeli M 1985 Found. Phys. 15 175

    [2]

    Carmeli M 1986 Inter. J. Theor. Phys. 15 89

    [3]

    Luo S K 1996 J. Beijing Inst. Technol. 16( S 1) 154 (in Chinese) [罗绍凯 1996 北京理工大学学报 16( 154] 〖4] Luo S K 1998 Appl. Math. Mech. 19 45

    [4]

    Luo S K , Fu J L , Chen X W 2001 Acta Phys. Sin. 50 383 (in Chinese) [罗绍凯、傅景礼、陈向炜 2001 物理学报 50 383]

    [5]

    Fang J H 2000 Acta Phys. Sin. 49 1028 (in Chinese) [方建会 2000 物理学报 49 1028]

    [6]

    Jia L Q 2003 Acta Phys. Sin. 52 1039 (in Chinese) [贾利群 2003 物理学报 52 1039]

    [7]

    Dong Q L , Liu B 2002 Acta Phys. Sin. 51 2191 (in Chinese) [董全林、刘 彬 2002 物理学报 51 2191]

    [8]

    Dong Q L, Liu B , Wang K , Zhang C X 2004 Acta Phys. Sin. 53 337 (in Chinese) [董全林、刘 彬、王 坤、张春熹 2004 物理学报 53 337]

    [9]

    Zhao W, Liu B 2005 Acta Phys. Sin. 54 4543 (in Chinese) [赵 武、刘 彬 2005 物理学报 54 4543]

    [10]

    Wang K 2005 Acta Phys. Sin. 54 3987 (in Chinese) [王 坤 2005 物理学报 54 3987]

    [11]

    Shi P M, Liu B 2007 Acta Phys. Sin. 56 3678 (in Chinese) [时培明、刘 彬 2007 物理学报 56 3678]

    [12]

    Meng Z, Liu B 2007 Acta Phys. Sin. 56 6194 (in Chinese) [孟 宗、刘 彬 2007 物理学报 56 6194]

    [13]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1312 (in Chinese) [时培明、刘 彬、侯东晓 2008 物理学报 57 1312]

    [14]

    Lu H T, He Z Y 1996 IEEE Trans. Circuit. Sys. I 43 700

    [15]

    Fischer I, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2188

    [16]

    Belair J, Campbell S, van der Driessche P 1996 J. Appl. Math. 56 245

    [17]

    Mo J Q, Lin W T, Zhu J 2004 Acta Phys. Sin.53 3245 (in Chinese)[莫嘉琪、林万涛、朱 江 2004 物理学报 53 3245]

    [18]

    Ji C J, Leung A Y T 2002 Int. J. Sound Vib. 253 985

    [19]

    Qian C Z, Tang J S 2006 Acta Phys. Sin. 55 617 (in Chinese) [钱长照、唐驾时 2006 物理学报 55 617]

    [20]

    Nbendjo B N , Tchoukuengno R , Woafo P 2003 Chaos Soliton. Fract. 18 345

    [21]

    Fu W B, Tang J S 2004 Acta Phys. Sin. 53 2889 (in Chinese) [符文彬、唐驾时 2004 物理学报 53 2889]

    [22]

    Shi P M, Liu B, Liu S 2008 Acta Phys. Sin. 57 3321 (in Chinese) [时培明、刘 彬、刘 爽 2008 物理学报 57 3321]

    [23]

    EI-Bassiouny A F 2003 Appl. Math. Comput. 134 217

    [24]

    EI-Bassiouny A F 2006 Physica A 366 167

    [25]

    Nayfeh A H 1981 Introduction to Perturbation Techniques (New York:Academic) p46

    [26]

    Zhang W, Zu J W 2008 Chaos Soliton. Fract. 38 1152

    [27]

    Shi P M, Liu B, Jiang J S 2009 Acta Phys. Sin. 58 2147 (in Chinese) [时培明、刘 彬、蒋金水 2009 物理学报 58 2147]

  • [1]

    Carmeli M 1985 Found. Phys. 15 175

    [2]

    Carmeli M 1986 Inter. J. Theor. Phys. 15 89

    [3]

    Luo S K 1996 J. Beijing Inst. Technol. 16( S 1) 154 (in Chinese) [罗绍凯 1996 北京理工大学学报 16( 154] 〖4] Luo S K 1998 Appl. Math. Mech. 19 45

    [4]

    Luo S K , Fu J L , Chen X W 2001 Acta Phys. Sin. 50 383 (in Chinese) [罗绍凯、傅景礼、陈向炜 2001 物理学报 50 383]

    [5]

    Fang J H 2000 Acta Phys. Sin. 49 1028 (in Chinese) [方建会 2000 物理学报 49 1028]

    [6]

    Jia L Q 2003 Acta Phys. Sin. 52 1039 (in Chinese) [贾利群 2003 物理学报 52 1039]

    [7]

    Dong Q L , Liu B 2002 Acta Phys. Sin. 51 2191 (in Chinese) [董全林、刘 彬 2002 物理学报 51 2191]

    [8]

    Dong Q L, Liu B , Wang K , Zhang C X 2004 Acta Phys. Sin. 53 337 (in Chinese) [董全林、刘 彬、王 坤、张春熹 2004 物理学报 53 337]

    [9]

    Zhao W, Liu B 2005 Acta Phys. Sin. 54 4543 (in Chinese) [赵 武、刘 彬 2005 物理学报 54 4543]

    [10]

    Wang K 2005 Acta Phys. Sin. 54 3987 (in Chinese) [王 坤 2005 物理学报 54 3987]

    [11]

    Shi P M, Liu B 2007 Acta Phys. Sin. 56 3678 (in Chinese) [时培明、刘 彬 2007 物理学报 56 3678]

    [12]

    Meng Z, Liu B 2007 Acta Phys. Sin. 56 6194 (in Chinese) [孟 宗、刘 彬 2007 物理学报 56 6194]

    [13]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1312 (in Chinese) [时培明、刘 彬、侯东晓 2008 物理学报 57 1312]

    [14]

    Lu H T, He Z Y 1996 IEEE Trans. Circuit. Sys. I 43 700

    [15]

    Fischer I, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2188

    [16]

    Belair J, Campbell S, van der Driessche P 1996 J. Appl. Math. 56 245

    [17]

    Mo J Q, Lin W T, Zhu J 2004 Acta Phys. Sin.53 3245 (in Chinese)[莫嘉琪、林万涛、朱 江 2004 物理学报 53 3245]

    [18]

    Ji C J, Leung A Y T 2002 Int. J. Sound Vib. 253 985

    [19]

    Qian C Z, Tang J S 2006 Acta Phys. Sin. 55 617 (in Chinese) [钱长照、唐驾时 2006 物理学报 55 617]

    [20]

    Nbendjo B N , Tchoukuengno R , Woafo P 2003 Chaos Soliton. Fract. 18 345

    [21]

    Fu W B, Tang J S 2004 Acta Phys. Sin. 53 2889 (in Chinese) [符文彬、唐驾时 2004 物理学报 53 2889]

    [22]

    Shi P M, Liu B, Liu S 2008 Acta Phys. Sin. 57 3321 (in Chinese) [时培明、刘 彬、刘 爽 2008 物理学报 57 3321]

    [23]

    EI-Bassiouny A F 2003 Appl. Math. Comput. 134 217

    [24]

    EI-Bassiouny A F 2006 Physica A 366 167

    [25]

    Nayfeh A H 1981 Introduction to Perturbation Techniques (New York:Academic) p46

    [26]

    Zhang W, Zu J W 2008 Chaos Soliton. Fract. 38 1152

    [27]

    Shi P M, Liu B, Jiang J S 2009 Acta Phys. Sin. 58 2147 (in Chinese) [时培明、刘 彬、蒋金水 2009 物理学报 58 2147]

  • [1] 时培明, 李纪召, 刘彬, 韩东颖. 一类准周期参激非线性相对转动动力系统的稳定性与时滞反馈控制. 物理学报, 2011, 60(9): 094501. doi: 10.7498/aps.60.094501
    [2] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [3] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [4] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [5] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [6] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [7] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [8] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制. 物理学报, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [9] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [10] 时培明, 刘 彬. 相对转动非线性动力系统的稳定性与强迫激励下的近似解. 物理学报, 2007, 56(7): 3678-3682. doi: 10.7498/aps.56.3678
    [11] 赵 武, 刘 彬, 时培明, 蒋金水. 一类非线性相对转动周期系统的平衡稳定性分析. 物理学报, 2006, 55(8): 3852-3857. doi: 10.7498/aps.55.3852
    [12] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动. 物理学报, 2008, 57(3): 1321-1328. doi: 10.7498/aps.57.1321
    [13] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制. 物理学报, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [14] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象. 物理学报, 2015, 64(21): 210302. doi: 10.7498/aps.64.210302
    [15] 董全林, 王 坤, 张春熹, 刘 彬. 圆柱体相对转动动力学方程的积分解. 物理学报, 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [16] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌. 物理学报, 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [17] 侯东晓, 赵红旭, 刘彬. 一类含Mathieu-Duffing振子的相对转动系统的分岔和混沌. 物理学报, 2013, 62(23): 234501. doi: 10.7498/aps.62.234501
    [18] 时培明, 韩东颖, 李纪召, 蒋金水, 刘彬. 一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析. 物理学报, 2012, 61(19): 194501. doi: 10.7498/aps.61.194501
    [19] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制. 物理学报, 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [20] 刘彬, 赵红旭, 侯东晓, 刘浩然. 一类含时变间隙的强非线性相对转动系统分岔和混沌. 物理学报, 2014, 63(7): 074501. doi: 10.7498/aps.63.074501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3430
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-08
  • 修回日期:  2010-01-29
  • 刊出日期:  2010-05-05

一类相对转动时滞非线性动力系统的稳定性分析

  • 1. (1)燕山大学电气工程学院,秦皇岛 066004; (2)燕山大学信息科学与工程学院,秦皇岛 066004
    基金项目: 

    国家重大技术装备研制项目科技攻关计划(批准号: ZZ02-13B-02-03-1)和河北省自然科学基金(批准号: F2010001317,E2010001262)资助的课题.

摘要: 建立了具有时变刚度、非线性阻尼和谐波激励的一类相对转动时滞非线性动力系统的动力学方程.采用多尺度法推导出时滞动力系统的分岔响应方程,运用奇异性理论研究系统结构稳定性,得到主共振稳态响应方程的转迁集以及不同参数下分岔曲线的拓扑结构.应用Hopf分岔理论讨论了时滞动力系统动态稳定性,给出了系统产生极限环的条件,最后用数值模拟的方法研究了时滞参数对系统极限环幅值的影响.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回