-
建立了光学微腔中光子激子系统的物理模型,确定了光学微腔宽度为常数和可变这两种情况下玻色凝聚时化学势的变化范围和粒子数密度随温度和位置的变化规律.以半导体GaAs光学微腔为例,探讨了温度对玻色凝聚的影响.研究表明:系统出现玻色凝聚时激子化学势的变化范围与材料介电函数、微腔宽度有关,而光子和激子的粒子数密度及总粒子数还与温度有关.玻色凝聚温度理论值与实验值接近.刚出现玻色凝聚时,光子和激子的粒子数密度几乎相等,且局限在r=0的附近;随着温度的降低,光子和激子的粒子数密度都增加,且存在的范围也不断扩大;不论光学微腔宽度是否可变,光子和激子的粒子数密度以及总粒子数都随温度的降低而增大,光子数总是多于激子数.
[1] Anderson M R, Mewes M O, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1996 Science 273 84
[2] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637
[3] Imamoglu A, Ram R 1996 J. Phys. Lett. A 214 193
[4] Loruovik Y E, Semielov A G, Vilangder M 2006 Theor. Exp. Phys. 84 176 (in Russian)
[5] Loruovik Y E, Semielov A G 2007 Theor. Exp. Phys. 86 1007 (in Russian)
[6] Baliti R, Hartwelt V, Snoke D 2007 Science 316 1007
[7] Bonolowa N S, Noruvik Y Y 2008 Phys. Stat. Sol. 50 1496 (in Russian)
[8] Yu X C, Mo Y 2004 Acta Phys. Sin. 53 4075 (in Chinese) [余学才、 莫 影 2004 物理学报 53 4075]
[9] Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛、 王林成、 衣学喜 2004 物理学报 53 991]
[10] Yu X C, Ye Y T, Cheng L 2006 Acta Phys. Sin. 55 551 (in Chinese)[余学才、 叶玉堂、 程 琳 2006 物理学报 55 551 ]
[11] Tan W H, Yan K Z 1999 Acta Phys. Sin. 48 1983 (in Chinese)[谭维翰、 闫珂柱 1999 物理学报 48 1983]
[12] Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 77 33620
[13] Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 78 43618
[14] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602
[15] Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 23602
[16] Kittel C 1956 Introduction to Solid State Physics (2nd ed)(New York: John Wiley & Sons Inc.) p188
[17] Cuiti C, Schwendimann P, Quattropani A 2003 Semicond. Sci. Techn. 18 S27
[18] Shen X C 2002 Spectra and Optical Properties of Semiconductor (Beijing: Science Press) p604 (in Chinese)[沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第604页]
-
[1] Anderson M R, Mewes M O, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1996 Science 273 84
[2] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637
[3] Imamoglu A, Ram R 1996 J. Phys. Lett. A 214 193
[4] Loruovik Y E, Semielov A G, Vilangder M 2006 Theor. Exp. Phys. 84 176 (in Russian)
[5] Loruovik Y E, Semielov A G 2007 Theor. Exp. Phys. 86 1007 (in Russian)
[6] Baliti R, Hartwelt V, Snoke D 2007 Science 316 1007
[7] Bonolowa N S, Noruvik Y Y 2008 Phys. Stat. Sol. 50 1496 (in Russian)
[8] Yu X C, Mo Y 2004 Acta Phys. Sin. 53 4075 (in Chinese) [余学才、 莫 影 2004 物理学报 53 4075]
[9] Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛、 王林成、 衣学喜 2004 物理学报 53 991]
[10] Yu X C, Ye Y T, Cheng L 2006 Acta Phys. Sin. 55 551 (in Chinese)[余学才、 叶玉堂、 程 琳 2006 物理学报 55 551 ]
[11] Tan W H, Yan K Z 1999 Acta Phys. Sin. 48 1983 (in Chinese)[谭维翰、 闫珂柱 1999 物理学报 48 1983]
[12] Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 77 33620
[13] Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 78 43618
[14] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602
[15] Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 23602
[16] Kittel C 1956 Introduction to Solid State Physics (2nd ed)(New York: John Wiley & Sons Inc.) p188
[17] Cuiti C, Schwendimann P, Quattropani A 2003 Semicond. Sci. Techn. 18 S27
[18] Shen X C 2002 Spectra and Optical Properties of Semiconductor (Beijing: Science Press) p604 (in Chinese)[沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第604页]
引用本文: |
Citation: |
计量
- 文章访问数: 3721
- PDF下载量: 823
- 被引次数: 0