搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质

张小超 赵丽军 樊彩梅 梁镇海 韩培德

过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质

张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法对未掺杂以及不同浓度过渡金属Fe,Co,Ni,Zn掺杂金红石TiO2的超晶胞体系进行了几何优化,并讨论了其晶格常数,电子能带结构和光学性质.研究结果表明:掺杂前后的晶格参数与实验值偏差在3.6%以下;适量的过渡金属掺杂不但影响体系能带结构,拓宽光吸收范围,而且扮演着俘获电子的重要角色,有利于光生电子-空穴对的有效分离以及增强光吸收能力;Fe,Co,Ni,Zn最佳理论掺杂体系分别为Ti0.75Fe0.25O2,Ti0.75Co0.25O2,Ti0.75Ni0.25O2,Ti0.83Zn0.17O2;Fe,Co,Ni3d态分裂为t2g和eg态,分别贡献于价带高能级和导带低能级部分,促进了电子-空穴对的生成,从而可提高TiO2的光催化性能;Zn3d态电子成对填满轨道,不易被激发,故光催化活性无明显提高.
    • 基金项目: 国家自然科学基金(批准号:20876104,20771080);山西省科技攻关项目(批准号:20090311082)资助的课题.
    [1]

    Fujishima A, Hond A K 1972 Nature 238 37

    [2]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [3]

    Niishiro R, Kato H, Kuto A 2005 Phys. Chem. Chem. Phys. 7 2241

    [4]

    Wang J, Zhang G, Zhang Z H, Zhang X D, Zhao G, Wen F Y, Pan Z J, Li Y, Zhang P, Kang P L 2006 Water Res. 40 2143

    [5]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [6]

    Zhao J, Yang X 2003 Build. Environ. 38 645

    [7]

    O’Regan B, Grätzel M 1991 Nature 353 737

    [8]

    Bach U, Lupo D, Comte P, J. Moser E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M 1998 Nature 395 583

    [9]

    Burdett J K, Hughbanks T, Miller G J, Richardson Jr J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [10]

    Litter M I 1999 Appl. Catal. B: Environ. 23 89

    [11]

    Luan Y, Fu P F, Dai X G, Du Z W 2004 Prog. in Chem. 16 738(in Chinese) [栾勇, 傅平丰, 戴学刚, 杜竹玮 2004 化学进展 16 738]

    [12]

    Eslava S, McPartlin M, Thomson R I, Rawson J M, Wright D S 2010 Inorg. Chem. 49 11532

    [13]

    Melghit K, Al-Shukeili O S, Al-Amri I 2009 Ceram. Int. 35 433

    [14]

    Barakat M A, Schaeffer H, Hayes G, Ismat-Shah S 2004 Appl. Catal. B: Environ. 57 23

    [15]

    Uhm Y R, Woo S H, Kim W W, Kimb S J, Rhee C K 2006 J. Magn. Magn. Mater. 304 e781

    [16]

    Jing L Q, Xin B F, Yuan F L, Xue L P, Wang B Q, Fu H G 2006 J. Phys. Chem. B 110 17860

    [17]

    Liu G G, Zhang X Z, Xu Y J, Niu X S, Zheng L Q, Ding X J 2005 Chemosph. 59 1367

    [18]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [19]

    Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523

    [20]

    Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z, Hansen J, Matthiesen J, Blekinge-Rasmussen A, L gsgaard E, Hammer B, Besenbacher F 2008 Science 320 1755

    [21]

    Zhang Z J, Meng D W, Wu X L, He K H, Fan X Y, Liu W P, Huang L W, Zheng J P 2011 Acta Phys. Sin. 60 037802 (in Chinese) [章正杰, 孟大维, 吴秀玲, 何开华, 樊孝玉, 刘卫平, 黄利武, 郑建平 2011 物理学报 60 037802]

    [22]

    Restori R, Schwarzenbach D, Schneider J R 1987 Acta Cryst. B 43 251

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [24]

    Segall M D, Lindan P L D, Probert M J 2002 J. Phys. Condens. Matt. 14 2717

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Monkhorst H J, Pack J D, Freeman D L 1979 Solid State Commun.29 723

    [27]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 J. Phys. Chem. Solids 63 1909

    [28]

    Hossain F M, Murch G E, Sheppard L, Nowotny J 2007 Solid State Ionics 178 319

    [29]

    Bian L, Song M X, Zhou T L, Zhao X Y, Dai Q Q 2009 J. Rare Earths 27 461

    [30]

    Yu X H, Li C S, Tang A, Ling Y, Tang T A, Wu Q, Kong J J 2010 Comput. Mater. Sci. 49 430

    [31]

    Perdew J P 1983 Phys. Rev. Lett. 51 1884

    [32]

    Zhao X Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [33]

    Baizaee S M, Mousavi N 2009 Physica B 404 2111

    [34]

    Karakitsou K E, Verykios X E 1993 Phys. Chem. 97 1184

    [35]

    Ding T, Liu Z F, Song K 2008 Prog. in Chem. 20 1283 (in Chi-nese) [丁涛, 刘占芳, 宋恺 2008 化学进展 20 1283]

    [36]

    Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K 2010 J. Taiwan Inst. Chem. Eng. 41 612

    [37]

    Wang X H, Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T 2005 J. Am. Chem. Soc. 127 10982

    [38]

    Kim S, Gislason J J, Morton R W, Pan X Q, Sun H P, Laine R M 2004 Chem. Mater. 16 2336

    [39]

    Xu X G, Jiang Y, Yu G H, Liu Q L, Geng W T 2008 Phys. Lett. A372 2098

    [40]

    Geng W T, Kim K S 2003 Phys. Rev. B 68 125203

    [41]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Engin. 24 514 (in Chi-nese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]

  • [1]

    Fujishima A, Hond A K 1972 Nature 238 37

    [2]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [3]

    Niishiro R, Kato H, Kuto A 2005 Phys. Chem. Chem. Phys. 7 2241

    [4]

    Wang J, Zhang G, Zhang Z H, Zhang X D, Zhao G, Wen F Y, Pan Z J, Li Y, Zhang P, Kang P L 2006 Water Res. 40 2143

    [5]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [6]

    Zhao J, Yang X 2003 Build. Environ. 38 645

    [7]

    O’Regan B, Grätzel M 1991 Nature 353 737

    [8]

    Bach U, Lupo D, Comte P, J. Moser E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M 1998 Nature 395 583

    [9]

    Burdett J K, Hughbanks T, Miller G J, Richardson Jr J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [10]

    Litter M I 1999 Appl. Catal. B: Environ. 23 89

    [11]

    Luan Y, Fu P F, Dai X G, Du Z W 2004 Prog. in Chem. 16 738(in Chinese) [栾勇, 傅平丰, 戴学刚, 杜竹玮 2004 化学进展 16 738]

    [12]

    Eslava S, McPartlin M, Thomson R I, Rawson J M, Wright D S 2010 Inorg. Chem. 49 11532

    [13]

    Melghit K, Al-Shukeili O S, Al-Amri I 2009 Ceram. Int. 35 433

    [14]

    Barakat M A, Schaeffer H, Hayes G, Ismat-Shah S 2004 Appl. Catal. B: Environ. 57 23

    [15]

    Uhm Y R, Woo S H, Kim W W, Kimb S J, Rhee C K 2006 J. Magn. Magn. Mater. 304 e781

    [16]

    Jing L Q, Xin B F, Yuan F L, Xue L P, Wang B Q, Fu H G 2006 J. Phys. Chem. B 110 17860

    [17]

    Liu G G, Zhang X Z, Xu Y J, Niu X S, Zheng L Q, Ding X J 2005 Chemosph. 59 1367

    [18]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [19]

    Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523

    [20]

    Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z, Hansen J, Matthiesen J, Blekinge-Rasmussen A, L gsgaard E, Hammer B, Besenbacher F 2008 Science 320 1755

    [21]

    Zhang Z J, Meng D W, Wu X L, He K H, Fan X Y, Liu W P, Huang L W, Zheng J P 2011 Acta Phys. Sin. 60 037802 (in Chinese) [章正杰, 孟大维, 吴秀玲, 何开华, 樊孝玉, 刘卫平, 黄利武, 郑建平 2011 物理学报 60 037802]

    [22]

    Restori R, Schwarzenbach D, Schneider J R 1987 Acta Cryst. B 43 251

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [24]

    Segall M D, Lindan P L D, Probert M J 2002 J. Phys. Condens. Matt. 14 2717

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Monkhorst H J, Pack J D, Freeman D L 1979 Solid State Commun.29 723

    [27]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 J. Phys. Chem. Solids 63 1909

    [28]

    Hossain F M, Murch G E, Sheppard L, Nowotny J 2007 Solid State Ionics 178 319

    [29]

    Bian L, Song M X, Zhou T L, Zhao X Y, Dai Q Q 2009 J. Rare Earths 27 461

    [30]

    Yu X H, Li C S, Tang A, Ling Y, Tang T A, Wu Q, Kong J J 2010 Comput. Mater. Sci. 49 430

    [31]

    Perdew J P 1983 Phys. Rev. Lett. 51 1884

    [32]

    Zhao X Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [33]

    Baizaee S M, Mousavi N 2009 Physica B 404 2111

    [34]

    Karakitsou K E, Verykios X E 1993 Phys. Chem. 97 1184

    [35]

    Ding T, Liu Z F, Song K 2008 Prog. in Chem. 20 1283 (in Chi-nese) [丁涛, 刘占芳, 宋恺 2008 化学进展 20 1283]

    [36]

    Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K 2010 J. Taiwan Inst. Chem. Eng. 41 612

    [37]

    Wang X H, Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T 2005 J. Am. Chem. Soc. 127 10982

    [38]

    Kim S, Gislason J J, Morton R W, Pan X Q, Sun H P, Laine R M 2004 Chem. Mater. 16 2336

    [39]

    Xu X G, Jiang Y, Yu G H, Liu Q L, Geng W T 2008 Phys. Lett. A372 2098

    [40]

    Geng W T, Kim K S 2003 Phys. Rev. B 68 125203

    [41]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Engin. 24 514 (in Chi-nese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]

  • [1] 苏巧智, 韩清珍, 高锦花, 温浩, 江兆潭. 过渡金属掺杂锐钛矿TiO2(101)表面的改性. 物理学报, 2017, 66(6): 067101. doi: 10.7498/aps.66.067101
    [2] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. 金红石结构TiO2晶体点缺陷形成能的经验途径计算. 物理学报, 2000, 49(7): 1307-1311. doi: 10.7498/aps.49.1307
    [3] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [4] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [5] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [6] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [7] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [8] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [9] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [10] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [11] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [12] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [15] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [16] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究. 物理学报, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [17] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [18] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [19] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [20] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3615
  • PDF下载量:  1158
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-12
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质

  • 1. 太原理工大学化学化工学院, 太原 030024;
  • 2. 太原理工大学材料科学与工程学院, 太原 030024
    基金项目: 

    国家自然科学基金(批准号:20876104,20771080)

    山西省科技攻关项目(批准号:20090311082)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法对未掺杂以及不同浓度过渡金属Fe,Co,Ni,Zn掺杂金红石TiO2的超晶胞体系进行了几何优化,并讨论了其晶格常数,电子能带结构和光学性质.研究结果表明:掺杂前后的晶格参数与实验值偏差在3.6%以下;适量的过渡金属掺杂不但影响体系能带结构,拓宽光吸收范围,而且扮演着俘获电子的重要角色,有利于光生电子-空穴对的有效分离以及增强光吸收能力;Fe,Co,Ni,Zn最佳理论掺杂体系分别为Ti0.75Fe0.25O2,Ti0.75Co0.25O2,Ti0.75Ni0.25O2,Ti0.83Zn0.17O2;Fe,Co,Ni3d态分裂为t2g和eg态,分别贡献于价带高能级和导带低能级部分,促进了电子-空穴对的生成,从而可提高TiO2的光催化性能;Zn3d态电子成对填满轨道,不易被激发,故光催化活性无明显提高.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回