搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼氮原子取代掺杂对分子器件负微分电阻效应的影响

范志强 谢芳

硼氮原子取代掺杂对分子器件负微分电阻效应的影响

范志强, 谢芳
PDF
导出引用
导出核心图
  • 利用基于非平衡格林函数和密度泛函理论相结合的第一性原理计算方法,研究了硼氮原子取代掺杂对三并苯分子电子输运性质的影响.计算结果表明,三并苯分子器件的电流在特定偏压区间内随电压的增加而减小呈现出负微分电阻效应,电流的峰谷之比高达5.12.用硼原子或者氮原子取代分子的中心原子后,器件0.8V以内的电流明显增加,但是负微分电阻效应减弱,相应的电流峰谷比分别降至3.83和3.61.分析认为,输运系数在特定偏压下的移动是器件负微分电阻效应的主要成因.核外电子数的差异导致硼氮原子掺杂取代可以使器件轨道及其透射峰分别向高能方向或者低能方向移动从而有效地调控了器件的低偏压下的电子传输能力和负微分电阻效应.
    • 基金项目: 国家自然科学基金(批准号:11147188),湖南处教育厅科研基金(批准号:11c0066);长沙理工大学重点学科建设项目资助的课题.
    [1]

    Andres R P, Bein T, M Dorogi, Feng S, Henderson J I, Kubiak C P Mahoney W, Osifchin R G, Reifenberger R 1996 Science 272 1323

    [2]

    Zhao P, Fang C F, Xia C J, Wang Y M, Liu D S, Xie S J 2008 Appl. Phys. Lett. 93 013113

    [3]

    Fu Q, Yang J L, Luo Y 2009 Appl. Phys. Lett. 95 182103

    [4]

    Fan Z Q Zhang Z H Qiu M Tang G P 2011 Phys. Lett. A 375 3314

    [5]

    Zhao J, Zeng C G, Cheng X, Wang K D, Wang G W, Yang J L, Hou J G Zhu Q S 2005 Phys. Rev. Lett. 95 045502

    [6]

    Pan J B, Zhang Z H, Deng X Q, Qiu M Guo C 2010 Appl. Phys. Lett. 97 203104

    [7]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [8]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [9]

    Geng H, Hu Y B, Shuai Z, Xia K, Gao H J, Chen K Q 2007 J. Phys. Chem. C 111 19098

    [10]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110

    [11]

    Ozaki T, Nishio K, Weng H Kino H 2010 Phys. Rev. B 81 075422

    [12]

    Zeng M G, Shen L, Yang M, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [13]

    Esaki L 1958 Phys. Rev. 109 603

    [14]

    Chang L L, Esaki L, Tsu R 1974 Appl. Phys. Lett. 24 593

    [15]

    Sollner T C L G, Goodhue W D, Tannenwald P E, Parker C D, Peck D D 1983 Appl. Phys. Lett. 43 588

    [16]

    Tang Z K, Wang X R 1996 Appl. Phys. Lett. 68 3449

    [17]

    Wang X R, Niu Q 1999 Phys. Rev. B 59 R12755

    [18]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [19]

    Pati R, McClain M, Bandyopadhyay A 2008 Phys. Rev. Lett. 100 246801

    [20]

    Zeng C G, Wang H Q, Wang B, Yang J L, Hou J G 2002 Appl. Phys. Lett. 77 3595

    [21]

    Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [22]

    Farajian A A, Esfarjani K, Kawazoe Y 1999 Phys. Rev. Lett. 82 5084

    [23]

    Kaun C C, Larade B, Mehrez H, Taylor J, Guo H 2002 Phys. Rev. B 65 205416

    [24]

    Masum H K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [25]

    Yanyushkina N Y, Belonenko M B, Lebedev N G 2011 Phys. Scr. 83 015603

    [26]

    Ren Y, Chen K Q, Wan Q, Pan A L, Hu W P 2010 Phys. Lett. A 374 3857

    [27]

    Zhang G L, Li D, Shang Y, Zhang H, Sun M, Liu B, Li Z S 2011 J. Phys. Chem. C 115 5257

    [28]

    Kim H, Jang S S, Kiehl R A, Goddard W A 2011 J. Phys. Chem. C 115 3722

    [29]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503

    [30]

    Zheng X H, Wang X L, Dai Z X, Zeng Z 2011 J. Chem. Phys. 134 044708

    [31]

    Zheng X H, Dai Z X, Wang X L, Zeng Z 2009 Acta Phys. Sin. 58 S259 (in Chinese) [郑小宏, 戴振翔, 王贤龙, 曾雉 2009 物理学报 58 S259]

    [32]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 0527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 物理学报 59 0527]

    [33]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [34]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [35]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

  • [1]

    Andres R P, Bein T, M Dorogi, Feng S, Henderson J I, Kubiak C P Mahoney W, Osifchin R G, Reifenberger R 1996 Science 272 1323

    [2]

    Zhao P, Fang C F, Xia C J, Wang Y M, Liu D S, Xie S J 2008 Appl. Phys. Lett. 93 013113

    [3]

    Fu Q, Yang J L, Luo Y 2009 Appl. Phys. Lett. 95 182103

    [4]

    Fan Z Q Zhang Z H Qiu M Tang G P 2011 Phys. Lett. A 375 3314

    [5]

    Zhao J, Zeng C G, Cheng X, Wang K D, Wang G W, Yang J L, Hou J G Zhu Q S 2005 Phys. Rev. Lett. 95 045502

    [6]

    Pan J B, Zhang Z H, Deng X Q, Qiu M Guo C 2010 Appl. Phys. Lett. 97 203104

    [7]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [8]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [9]

    Geng H, Hu Y B, Shuai Z, Xia K, Gao H J, Chen K Q 2007 J. Phys. Chem. C 111 19098

    [10]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110

    [11]

    Ozaki T, Nishio K, Weng H Kino H 2010 Phys. Rev. B 81 075422

    [12]

    Zeng M G, Shen L, Yang M, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [13]

    Esaki L 1958 Phys. Rev. 109 603

    [14]

    Chang L L, Esaki L, Tsu R 1974 Appl. Phys. Lett. 24 593

    [15]

    Sollner T C L G, Goodhue W D, Tannenwald P E, Parker C D, Peck D D 1983 Appl. Phys. Lett. 43 588

    [16]

    Tang Z K, Wang X R 1996 Appl. Phys. Lett. 68 3449

    [17]

    Wang X R, Niu Q 1999 Phys. Rev. B 59 R12755

    [18]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [19]

    Pati R, McClain M, Bandyopadhyay A 2008 Phys. Rev. Lett. 100 246801

    [20]

    Zeng C G, Wang H Q, Wang B, Yang J L, Hou J G 2002 Appl. Phys. Lett. 77 3595

    [21]

    Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [22]

    Farajian A A, Esfarjani K, Kawazoe Y 1999 Phys. Rev. Lett. 82 5084

    [23]

    Kaun C C, Larade B, Mehrez H, Taylor J, Guo H 2002 Phys. Rev. B 65 205416

    [24]

    Masum H K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [25]

    Yanyushkina N Y, Belonenko M B, Lebedev N G 2011 Phys. Scr. 83 015603

    [26]

    Ren Y, Chen K Q, Wan Q, Pan A L, Hu W P 2010 Phys. Lett. A 374 3857

    [27]

    Zhang G L, Li D, Shang Y, Zhang H, Sun M, Liu B, Li Z S 2011 J. Phys. Chem. C 115 5257

    [28]

    Kim H, Jang S S, Kiehl R A, Goddard W A 2011 J. Phys. Chem. C 115 3722

    [29]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503

    [30]

    Zheng X H, Wang X L, Dai Z X, Zeng Z 2011 J. Chem. Phys. 134 044708

    [31]

    Zheng X H, Dai Z X, Wang X L, Zeng Z 2009 Acta Phys. Sin. 58 S259 (in Chinese) [郑小宏, 戴振翔, 王贤龙, 曾雉 2009 物理学报 58 S259]

    [32]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 0527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 物理学报 59 0527]

    [33]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [34]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [35]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

  • [1] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [2] 郑继明, 任兆玉, 郭平, 白晋涛, 郑新亮, 田进寿. 钽硅团簇电子输运性质的第一性原理研究. 物理学报, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [3] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算. 物理学报, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [4] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算 . 物理学报, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [5] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算. 物理学报, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [6] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [7] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [8] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析. 物理学报, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [9] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应. 物理学报, 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [10] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应. 物理学报, 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [11] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [12] 齐元华, 牛秀明. 分子结点电子输运性质的理论研究. 物理学报, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [13] 陈有为, 郑继明, 任兆玉, 赵佩, 郭平. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [14] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [15] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [16] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应. 物理学报, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [17] 王红艳, 李喜波, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [19] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [20] 李永辉, 闫强, 周丽萍, 韩琴. 金纳米线接触构型相关的双重负微分电阻与整流效应. 物理学报, 2015, 64(5): 057301. doi: 10.7498/aps.64.057301
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2583
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-28
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

硼氮原子取代掺杂对分子器件负微分电阻效应的影响

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410004;
  • 2. 宜春学院物理科学与工程技术学院, 宜春 336000
    基金项目: 

    国家自然科学基金(批准号:11147188),湖南处教育厅科研基金(批准号:11c0066)

    长沙理工大学重点学科建设项目资助的课题.

摘要: 利用基于非平衡格林函数和密度泛函理论相结合的第一性原理计算方法,研究了硼氮原子取代掺杂对三并苯分子电子输运性质的影响.计算结果表明,三并苯分子器件的电流在特定偏压区间内随电压的增加而减小呈现出负微分电阻效应,电流的峰谷之比高达5.12.用硼原子或者氮原子取代分子的中心原子后,器件0.8V以内的电流明显增加,但是负微分电阻效应减弱,相应的电流峰谷比分别降至3.83和3.61.分析认为,输运系数在特定偏压下的移动是器件负微分电阻效应的主要成因.核外电子数的差异导致硼氮原子掺杂取代可以使器件轨道及其透射峰分别向高能方向或者低能方向移动从而有效地调控了器件的低偏压下的电子传输能力和负微分电阻效应.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回