搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Bi离子锗铌酸盐红外发光玻璃的研究

赵鹤玲 夏海平 罗彩香 徐军

掺Bi离子锗铌酸盐红外发光玻璃的研究

赵鹤玲, 夏海平, 罗彩香, 徐军
PDF
导出引用
导出核心图
  • 用高温熔融法制备了Bi2O3掺杂的(0.9-x) GeO2-xNb2O5-0.1BaO (含量x为摩尔分数, x=0, 0.04, 0.07, 0.1)系列玻璃. 测定了玻璃样品的差热分析(DTA)曲线、吸收光谱、发射光谱及X射线光电子能谱(XPS). 从DTA曲线分析得到玻璃的结晶起始温度与软化温度之差(Tx-Tg)达200℃以上. 吸收光谱中可观察到位于500, 700, 808和1000 nm处的吸收峰, 并随着Nb2O5含量x的增加吸收边带发生红移. 在波长为808 nm激光激发下, 观察到发光中心位于1300 nm处、荧光光谱半高宽约为200 nm的宽带发光. 荧光强度随Bi2O3掺杂量的增加先增强后减弱, 当掺杂量达到约0.01时, 荧光强度达到最强. 随着Nb2O5含量x从0.04增加到0.1时, 荧光强度逐步减弱. 样品的XPS峰分别位于159.6和164.7 eV, 它们介于Bi3+与Bi5+的特征结合能之间, 因此Bi3+与Bi5+可能同时存在于玻璃基质中. 从XPS及Bi离子的发光特性推断, 宽带的荧光发射可能起因于Bi5+. 随着Nb2O5含量x的增加, 荧光强度逐步减弱. 分析认为, Nb2O5取代GeO2后形成了NbGe缺陷, 需要低价Bi离子进行电子补偿, 因而抑制了Bi5+形成, 致使荧光强度减弱.
    • 基金项目: 国家自然科学基金(批准号: 50972061)、浙江省自然科学基金(批准号: R4100364)、宁波市自然科学基金(批准号: 2009A610007)和宁波大学王宽诚幸福基金资助的课题.
    [1]

    Zhou S F 2007 Appl. Phys. Lett. 91 061919

    [2]

    Qiu J R, Peng M Y, Ren J J, Meng X G, Jiang X W, Zhu C S 2008 J. Non-Cryst. Solids 354 1235

    [3]

    Chi G W, Zhou D C, Song Z G, Qiu J B 2009 Opt. Mater. 31 945

    [4]

    Peng M Y, Wu B T, Da N, Wang C, Chen D P, Qiu J R 2008 J. Non-Cryst. Solids 354 122

    [5]

    Blasse G, Brill A 1997 J. Chem. Phys. 47 1920

    [6]

    Srivastava M A 1998 J. Lumin. 78 239

    [7]

    Blasse G, Brill A 1968 J. Chem. Phys. 48 217

    [8]

    Dong W, Zhu C 2003 J. Phys. Chem. Solids 64 265

    [9]

    Murata T, Mour T 2007 J. Non-Cryst. Solids 353 2403

    [10]

    Fujimoto Y, Nakatsuka M 2001 Jpn. J. Appl. Phys. 40 L279

    [11]

    Yu C, Xia H P, Luo C X, Hu Y, Chen H B, Xu J 2010 Chin. J. Lasers 37 2610 (in Chinese) [虞灿, 夏海平, 罗彩香, 胡元, 陈红兵, 徐军 2010 中国激光 37 2610]

    [12]

    Fujimoto Y, Nakatsuka M 2003 Appl. Phys. Lett. 82 3325

    [13]

    Wang X J, Xia H P 2006 Acta Phys. Sin. 55 5263 (in Chinese) [王雪俊, 夏海平 2006 物理学报 55 5263]

    [14]

    Xu J, Ma X S, Gu J, Sheng Y F, Zhang X M 1990 J. Synth. Cryst. 19 283 (in Chinese) [徐军, 马笑山, 顾及, 沈雅芳, 张新民 1990 人工晶体学报 19 283]

    [15]

    Duffy J A 1996 J. Non-Cryst. Solids 196 45

    [16]

    Fujimoto Y 2010 J. Am. Ceram. Soc. 93 581

    [17]

    Wang Y L, Dai S X, Xu T F, Nie Q H, Sheng X, Wang X S 2008 Acta Photon. Sin. 37 89 (in Chinese) [王艳玲, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四 2008 光子学报 37 89]

    [18]

    Peng M Y, Qiu J R, Chen D, Meng X G, Yang I, Jiang X W, Zhu C 2004 Opt. Lett. 29 1998

    [19]

    Xu T F, Zhang X D, Nie Q H, Dai S X, Seng X, Liang X W, Zhang X H 2006 J. Rare Metals 30 6 (in Chinese) [徐铁峰, 张旭东, 聂秋华, 戴世勋, 沈祥, 梁晓炜, 章向华 2006 稀有金属 30 6]

    [20]

    Jiang X, Animesh J 2010 Opt. Mater. 33 14

    [21]

    Yang J H, Dai S X, Wen L, Liu Z P, Hu L L, Jiang Z H 2003 Acta Phys. Sin. 52 508 (in Chinese) [杨建虎, 戴世勋, 温磊, 柳祝平, 胡丽丽, 姜中宏 2003 物理学报 52 508]

    [22]

    Wagner C D 1990 Auger and X-Ray Photoelectron Spectroscopy (2nd ed) (New York: John Wiley) Vol 1

    [23]

    Blasse G, Meijierink A, Nomes M, Zuidema J 1994 J. Phys. Chem. Solids 55 171

  • [1]

    Zhou S F 2007 Appl. Phys. Lett. 91 061919

    [2]

    Qiu J R, Peng M Y, Ren J J, Meng X G, Jiang X W, Zhu C S 2008 J. Non-Cryst. Solids 354 1235

    [3]

    Chi G W, Zhou D C, Song Z G, Qiu J B 2009 Opt. Mater. 31 945

    [4]

    Peng M Y, Wu B T, Da N, Wang C, Chen D P, Qiu J R 2008 J. Non-Cryst. Solids 354 122

    [5]

    Blasse G, Brill A 1997 J. Chem. Phys. 47 1920

    [6]

    Srivastava M A 1998 J. Lumin. 78 239

    [7]

    Blasse G, Brill A 1968 J. Chem. Phys. 48 217

    [8]

    Dong W, Zhu C 2003 J. Phys. Chem. Solids 64 265

    [9]

    Murata T, Mour T 2007 J. Non-Cryst. Solids 353 2403

    [10]

    Fujimoto Y, Nakatsuka M 2001 Jpn. J. Appl. Phys. 40 L279

    [11]

    Yu C, Xia H P, Luo C X, Hu Y, Chen H B, Xu J 2010 Chin. J. Lasers 37 2610 (in Chinese) [虞灿, 夏海平, 罗彩香, 胡元, 陈红兵, 徐军 2010 中国激光 37 2610]

    [12]

    Fujimoto Y, Nakatsuka M 2003 Appl. Phys. Lett. 82 3325

    [13]

    Wang X J, Xia H P 2006 Acta Phys. Sin. 55 5263 (in Chinese) [王雪俊, 夏海平 2006 物理学报 55 5263]

    [14]

    Xu J, Ma X S, Gu J, Sheng Y F, Zhang X M 1990 J. Synth. Cryst. 19 283 (in Chinese) [徐军, 马笑山, 顾及, 沈雅芳, 张新民 1990 人工晶体学报 19 283]

    [15]

    Duffy J A 1996 J. Non-Cryst. Solids 196 45

    [16]

    Fujimoto Y 2010 J. Am. Ceram. Soc. 93 581

    [17]

    Wang Y L, Dai S X, Xu T F, Nie Q H, Sheng X, Wang X S 2008 Acta Photon. Sin. 37 89 (in Chinese) [王艳玲, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四 2008 光子学报 37 89]

    [18]

    Peng M Y, Qiu J R, Chen D, Meng X G, Yang I, Jiang X W, Zhu C 2004 Opt. Lett. 29 1998

    [19]

    Xu T F, Zhang X D, Nie Q H, Dai S X, Seng X, Liang X W, Zhang X H 2006 J. Rare Metals 30 6 (in Chinese) [徐铁峰, 张旭东, 聂秋华, 戴世勋, 沈祥, 梁晓炜, 章向华 2006 稀有金属 30 6]

    [20]

    Jiang X, Animesh J 2010 Opt. Mater. 33 14

    [21]

    Yang J H, Dai S X, Wen L, Liu Z P, Hu L L, Jiang Z H 2003 Acta Phys. Sin. 52 508 (in Chinese) [杨建虎, 戴世勋, 温磊, 柳祝平, 胡丽丽, 姜中宏 2003 物理学报 52 508]

    [22]

    Wagner C D 1990 Auger and X-Ray Photoelectron Spectroscopy (2nd ed) (New York: John Wiley) Vol 1

    [23]

    Blasse G, Meijierink A, Nomes M, Zuidema J 1994 J. Phys. Chem. Solids 55 171

  • [1] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [2] 罗彩香, 夏海平, 虞灿, 徐军. 掺Bi钨酸镉单晶体发光特性的研究. 物理学报, 2011, 60(7): 077806. doi: 10.7498/aps.60.077806
    [3] 张崇宏, 张丽卿, 宋银, 孙友梅, 韩录会, 杨义涛. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [4] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [5] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究. 物理学报, 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [6] 刘军芳, 苏良碧, 徐军. Bi2O3-B2O3-BaO玻璃的制备及其近红外发光性能的研究. 物理学报, 2013, 62(3): 037804. doi: 10.7498/aps.62.037804
    [7] 刘军芳, 苏良碧, 唐慧丽, 徐军. 掺铋离子BaO-B2O3玻璃的制备及其近红外发光性能的研究. 物理学报, 2012, 61(12): 127806. doi: 10.7498/aps.61.127806
    [8] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [9] 杨建虎, 戴能利, 徐时清, 温 磊, 胡丽丽, 戴世勋, 姜中宏. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响. 物理学报, 2003, 52(6): 1533-1539. doi: 10.7498/aps.52.1533
    [10] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究. 物理学报, 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [11] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [12] 徐卓, 陈光德, 苑进社, 齐鸣, 李爱珍. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [13] 赵 昆, 冯玉清, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [14] 刘常升, 李永华, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [15] 宋 珍, 欧谷平, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [16] 王晓雄, 李宏年. Sm富勒烯的芯态光电子能谱. 物理学报, 2006, 55(8): 4259-4264. doi: 10.7498/aps.55.4259
    [17] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [18] 吕景文, 刘 双, 肖洪亮, 郑笑秋, 李 岳, 李 峰. Cr3+/Tm3+/Ho3+共掺氟磷酸盐玻璃的制备及性能表征. 物理学报, 2008, 57(10): 6373-6380. doi: 10.7498/aps.57.6373
    [19] 兰秀风, 骆晓森, 沈中华, 陆 建, 刘 莹, 倪晓武, 彭长德. 乙醇和水分子形成配合物与荧光光谱特性研究. 物理学报, 2005, 54(11): 5455-5461. doi: 10.7498/aps.54.5455
    [20] 屈军乐, 林子扬, 陈丹妮, 许改霞, 胡 涛, 郭宝平, 牛憨笨, 刘立新. 双光子激发时间分辨荧光光谱测量技术. 物理学报, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2311
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-22
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

掺Bi离子锗铌酸盐红外发光玻璃的研究

  • 1. 宁波大学光电子功能材料实验室, 宁波 315211;
  • 2. 中国科学院上海硅酸盐研究所, 上海 200050
    基金项目: 

    国家自然科学基金(批准号: 50972061)、浙江省自然科学基金(批准号: R4100364)、宁波市自然科学基金(批准号: 2009A610007)和宁波大学王宽诚幸福基金资助的课题.

摘要: 用高温熔融法制备了Bi2O3掺杂的(0.9-x) GeO2-xNb2O5-0.1BaO (含量x为摩尔分数, x=0, 0.04, 0.07, 0.1)系列玻璃. 测定了玻璃样品的差热分析(DTA)曲线、吸收光谱、发射光谱及X射线光电子能谱(XPS). 从DTA曲线分析得到玻璃的结晶起始温度与软化温度之差(Tx-Tg)达200℃以上. 吸收光谱中可观察到位于500, 700, 808和1000 nm处的吸收峰, 并随着Nb2O5含量x的增加吸收边带发生红移. 在波长为808 nm激光激发下, 观察到发光中心位于1300 nm处、荧光光谱半高宽约为200 nm的宽带发光. 荧光强度随Bi2O3掺杂量的增加先增强后减弱, 当掺杂量达到约0.01时, 荧光强度达到最强. 随着Nb2O5含量x从0.04增加到0.1时, 荧光强度逐步减弱. 样品的XPS峰分别位于159.6和164.7 eV, 它们介于Bi3+与Bi5+的特征结合能之间, 因此Bi3+与Bi5+可能同时存在于玻璃基质中. 从XPS及Bi离子的发光特性推断, 宽带的荧光发射可能起因于Bi5+. 随着Nb2O5含量x的增加, 荧光强度逐步减弱. 分析认为, Nb2O5取代GeO2后形成了NbGe缺陷, 需要低价Bi离子进行电子补偿, 因而抑制了Bi5+形成, 致使荧光强度减弱.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回