搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

宋坤 柴常春 杨银堂 贾护军 陈斌 马振洋

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋
PDF
导出引用
导出核心图
  • 基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压.
    • 基金项目: 国家杰出青年基金(批准号: 60725415)和国家部委预研项目(批准号: 51308030201)资助的课题.
    [1]

    Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987

    [2]

    Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065

    [3]

    Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287

    [4]

    Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410

    [5]

    Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622

    [6]

    Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 物理学报 57 2871]

    [7]

    Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285

    [8]

    Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1

    [9]

    Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343

    [10]

    Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353

    [11]

    Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839

    [12]

    Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729

    [13]

    Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456

    [14]

    Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359

    [15]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048

    [16]

    Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387

    [17]

    Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143

    [18]

    Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865

    [19]

    Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341

    [20]

    Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363

    [21]

    Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442

    [22]

    Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191

    [23]

    DESSIS-ISE Manual Ver. 10.0, ISE

    [24]

    Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386

    [25]

    Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389

    [26]

    Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925

    [27]

    Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827

    [28]

    Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039

  • [1]

    Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987

    [2]

    Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065

    [3]

    Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287

    [4]

    Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410

    [5]

    Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622

    [6]

    Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 物理学报 57 2871]

    [7]

    Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285

    [8]

    Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1

    [9]

    Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343

    [10]

    Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353

    [11]

    Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839

    [12]

    Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729

    [13]

    Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456

    [14]

    Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359

    [15]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048

    [16]

    Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387

    [17]

    Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143

    [18]

    Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865

    [19]

    Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341

    [20]

    Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363

    [21]

    Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442

    [22]

    Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191

    [23]

    DESSIS-ISE Manual Ver. 10.0, ISE

    [24]

    Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386

    [25]

    Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389

    [26]

    Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925

    [27]

    Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827

    [28]

    Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039

  • [1] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型. 物理学报, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [2] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [3] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [4] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [5] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [6] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [7] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [8] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型. 物理学报, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [9] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] 杨林安, 张义门, 于春利, 张玉明. SiC功率金属-半导体场效应管的陷阱效应模型. 物理学报, 2003, 52(2): 302-306. doi: 10.7498/aps.52.302
    [11] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [12] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [13] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [14] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [15] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [16] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [17] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [18] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [19] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [20] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1438
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-06
  • 修回日期:  2012-02-29
  • 刊出日期:  2012-09-05

改进型异质栅对深亚微米栅长碳化硅MESFET特性影响

  • 1. 西安电子科技大学微电子学院, 教育部宽禁带半导体材料与器件重点实验室, 西安 710071
    基金项目: 

    国家杰出青年基金(批准号: 60725415)和国家部委预研项目(批准号: 51308030201)资助的课题.

摘要: 基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回