搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿)

王伟 唐佳伟 王乐天 陈小兵

脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿)

王伟, 唐佳伟, 王乐天, 陈小兵
PDF
导出引用
导出核心图
  • 采用脉冲激光沉积法制备了0.20BiInO3-0.80PbTiO3(20BI-PT)高温压电薄膜,并与0.15BiInO3-0.85PbTiO3(15BI-PT)样品进行了比较研究. X射线衍射谱显示,20BI-PT样品100峰出现了明显的劈裂,显示样品具有更高的四方对称性. FESEM图显示,20BI-PT样品中出现了部分111取向的三角形晶粒. 20BI-PT样品的铁电剩余极化(Pr)为~28 C/cm2,矫顽场(Ec)为~120 kV/cm,相较15BI-PT样品,Pr略有增加,但同时Ec也有增加. 20BI-PT样品的横向压电系数(e31,f)约为4.70.6 C/m2,和15BI-PT相比几乎一样. 介电温度谱显示,20BI-PT 样品的居里温度比15BI-PT增加了约30 ℃,达590 ℃,且介电峰没有明显的频率依赖性. Rayleigh分析显示,20BI-PT样品中内在本征因素及可翻转畴对介电非线性的贡献和15BI-PT基本相同,但是外在因素的贡献没有15BI-PT的贡献大,这可能和20BI-PT样品中晶粒111相对取向率较高有关.
    • 基金项目: 国家自然科学基金(批准号:51072177)和江苏省教育厅自然科学基础研究(批准号:08KJB140011)资助的课题.
    [1]

    Randall C A, Eitel R E, Stringer C, Song T H, Zhang S J, Shrout T R 2004 High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals edited by S. Trolier-McKinstry (The Pennsylvania State University, University Park, 2004)

    [2]

    Turner R C, Fuierer P A, Newnham R E, Shrout T R 1994 Appl. Acoust. 41 299

    [3]

    Liu P, Yang T Q, Zhang L Y 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹 2000 物理学报 49 2303]

    [4]

    Eitel R E, Randall C A, Shrout T R 2001 Jpn. J. Appl. Phys. Part 1 40 5999

    [5]

    Eitel R E, Randall C A, Shrout T R 2002 Jpn. J. Appl. Phys. Part 1 41 2099

    [6]

    Nino J C, Trolier-McKinstry S 2004 J. Mater. Res. 19 568

    [7]

    Wen H, Wang X, Zhong C, Shu L, Li L 2007 Appl. Phys. Lett. 90 202902

    [8]

    Grinberg I, Suchomel M R, Davies P K, Rappe A M 2005 J. Appl. Phys. 98 094111

    [9]

    Duan R, Speyer R F, Alberta E, Shrout T R 2004 J. Mater. Res. 19 2185

    [10]

    Zhang S, Xia R, Randall C A, Shrout T R, Duan R, Speyer R F 2005 J. Mater. Res. 20 2067

    [11]

    Ko S W, Yeo H G, Trolier-McKinstry S 2009 Appl. Phys. Lett. 95 162901

    [12]

    Lee S Y, Ko S W, Lee S, Trolier-McKinstry S 2012 Appl. Phys. Lett. 100 212905

    [13]

    Qin B, Chen Y, Jiang Y, Xue X, Xiao D, Zhu J 2007 Proceedings of the 16th IEEE International Symposium on Applications of Ferroelectric 616–617

    [14]

    Wilke R H T, Moses P, Jousse P, Yeager C, Trolier-McKinstry S 2012 Sensors and Actuators A 173 152

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Li Y, Yang Y, Yao J, Viswan R, Wang Z, Li J, Viehland D 2012 Appl. Phys. Lett. 101 022905

    [17]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [18]

    Yang N, Chen G H, Zhang Y 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨宁, 陈光华, 张阳 2000 物理学报 49 2225]

    [19]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

    [20]

    Noguchi Y, Miwa I, Goshima Y, Miyayama M 2000 Jpn. J. Appl. Phys. 39 L1259

    [21]

    Gharb N B, Trolier-McKinstry S 2005 J. Appl. Phys. 97 064106

    [22]

    Ihlefeld J F, Shelton C T 2012 Appl. Phys. Lett. 101 052902

    [23]

    Damjanovic D, Demartin M 1996 J. Phys. D: Appl. Phys. 29 2057

  • [1]

    Randall C A, Eitel R E, Stringer C, Song T H, Zhang S J, Shrout T R 2004 High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals edited by S. Trolier-McKinstry (The Pennsylvania State University, University Park, 2004)

    [2]

    Turner R C, Fuierer P A, Newnham R E, Shrout T R 1994 Appl. Acoust. 41 299

    [3]

    Liu P, Yang T Q, Zhang L Y 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹 2000 物理学报 49 2303]

    [4]

    Eitel R E, Randall C A, Shrout T R 2001 Jpn. J. Appl. Phys. Part 1 40 5999

    [5]

    Eitel R E, Randall C A, Shrout T R 2002 Jpn. J. Appl. Phys. Part 1 41 2099

    [6]

    Nino J C, Trolier-McKinstry S 2004 J. Mater. Res. 19 568

    [7]

    Wen H, Wang X, Zhong C, Shu L, Li L 2007 Appl. Phys. Lett. 90 202902

    [8]

    Grinberg I, Suchomel M R, Davies P K, Rappe A M 2005 J. Appl. Phys. 98 094111

    [9]

    Duan R, Speyer R F, Alberta E, Shrout T R 2004 J. Mater. Res. 19 2185

    [10]

    Zhang S, Xia R, Randall C A, Shrout T R, Duan R, Speyer R F 2005 J. Mater. Res. 20 2067

    [11]

    Ko S W, Yeo H G, Trolier-McKinstry S 2009 Appl. Phys. Lett. 95 162901

    [12]

    Lee S Y, Ko S W, Lee S, Trolier-McKinstry S 2012 Appl. Phys. Lett. 100 212905

    [13]

    Qin B, Chen Y, Jiang Y, Xue X, Xiao D, Zhu J 2007 Proceedings of the 16th IEEE International Symposium on Applications of Ferroelectric 616–617

    [14]

    Wilke R H T, Moses P, Jousse P, Yeager C, Trolier-McKinstry S 2012 Sensors and Actuators A 173 152

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Li Y, Yang Y, Yao J, Viswan R, Wang Z, Li J, Viehland D 2012 Appl. Phys. Lett. 101 022905

    [17]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [18]

    Yang N, Chen G H, Zhang Y 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨宁, 陈光华, 张阳 2000 物理学报 49 2225]

    [19]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

    [20]

    Noguchi Y, Miwa I, Goshima Y, Miyayama M 2000 Jpn. J. Appl. Phys. 39 L1259

    [21]

    Gharb N B, Trolier-McKinstry S 2005 J. Appl. Phys. 97 064106

    [22]

    Ihlefeld J F, Shelton C T 2012 Appl. Phys. Lett. 101 052902

    [23]

    Damjanovic D, Demartin M 1996 J. Phys. D: Appl. Phys. 29 2057

  • [1] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射. 物理学报, 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [2] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [3] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [4] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质. 物理学报, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [5] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [6] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征. 物理学报, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [7] 王淑芳, 刘 震, 赵嵩卿, 周岳亮. 利用脉冲激光沉积技术在双轴织构的Ni基带上外延CeO2薄膜. 物理学报, 2005, 54(12): 5820-5823. doi: 10.7498/aps.54.5820
    [8] 李少珍, 徐文广, 魏建华, 李美亚, 赵兴中. Si基铁电Bi3.15Nd0.85Ti3O12多层薄膜的一致取向生长和性能的研究. 物理学报, 2006, 55(3): 1472-1478. doi: 10.7498/aps.55.1472
    [9] 刘 婷, 谈松林, 张 辉, 秦 毅, 张鹏翔. 氧压对SrTiO3和SrNb0.2Ti0.8O3薄膜晶格参数的影响及激光感生热电电压效应. 物理学报, 2008, 57(7): 4424-4427. doi: 10.7498/aps.57.4424
    [10] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜. 物理学报, 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
    [11] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [12] 韩建民, 刘元富, 李雪明, 张谷令, 王久丽, 陈光良, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究. 物理学报, 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [13] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [14] 江学范, 方靖淮, 罗礼进, 仲崇贵, 蒋青. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [15] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟. 物理学报, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [16] 范正修, 邵建达, 夏志林. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [17] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [18] 武峥, 周嘉仪, 曹艺, 马柯, 贾艳敏, 张以河. 电泳辅助制备伪1-3陶瓷/聚合物压电复合材料. 物理学报, 2014, 63(2): 027701. doi: 10.7498/aps.63.027701
    [19] 葛存旺, 方靖淮, 仲崇贵, 蒋青. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
  • 引用本文:
    Citation:
计量
  • 文章访问数:  535
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-12-05

脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿)

  • 1. 扬州大学物理科学与技术学院, 扬州 225002
    基金项目: 

    国家自然科学基金(批准号:51072177)和江苏省教育厅自然科学基础研究(批准号:08KJB140011)资助的课题.

摘要: 采用脉冲激光沉积法制备了0.20BiInO3-0.80PbTiO3(20BI-PT)高温压电薄膜,并与0.15BiInO3-0.85PbTiO3(15BI-PT)样品进行了比较研究. X射线衍射谱显示,20BI-PT样品100峰出现了明显的劈裂,显示样品具有更高的四方对称性. FESEM图显示,20BI-PT样品中出现了部分111取向的三角形晶粒. 20BI-PT样品的铁电剩余极化(Pr)为~28 C/cm2,矫顽场(Ec)为~120 kV/cm,相较15BI-PT样品,Pr略有增加,但同时Ec也有增加. 20BI-PT样品的横向压电系数(e31,f)约为4.70.6 C/m2,和15BI-PT相比几乎一样. 介电温度谱显示,20BI-PT 样品的居里温度比15BI-PT增加了约30 ℃,达590 ℃,且介电峰没有明显的频率依赖性. Rayleigh分析显示,20BI-PT样品中内在本征因素及可翻转畴对介电非线性的贡献和15BI-PT基本相同,但是外在因素的贡献没有15BI-PT的贡献大,这可能和20BI-PT样品中晶粒111相对取向率较高有关.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回