搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进变分法对原子激发态精确波函数的研究

熊庄 汪振新  Naoum C. Bacalis

基于改进变分法对原子激发态精确波函数的研究

熊庄, 汪振新,  Naoum C. Bacalis
PDF
导出引用
导出核心图
  • 传统的利用变分原理求解Schrdinger方程获得原子激发态波函数的方法是基于HUM理论(Hylleraas-Undheim and MacDonald theorem),在有限的N维Hilbert空间中,通过求解久期方程的高阶根获得激发态的近似波函数. 在我们前期的工作中已指出,由于HUM方法的几个内禀缺陷限制,它将导致在相同的函数空间中,由传统变分法得到的激发态波函数的质量远差于足够好的基态波函数. 进一步地,为了避免基于HUM方法的变分缺陷,本文提出了新的变分函数,并证明其试探激发态波函数在其本征态处具有局域极小值,因而可以通过变分极小无限制的逼近该本征态. 在此基础上,利用广义的Laguerre类型轨道(GLTO)在组态相互作用的框架下,分别编写了基于传统HUM理论和新变分函数的关于求解原子近似波函数的计算程序,并且利用该程序计算了氦原子(He)在1S(e),1P(o)态下相应的基态及激发态近似波函数及对应的能量值和径向平均值,并与已有文献中结果进行比较,计算结果显示了HUM理论的缺陷及新变分函数优越性,并就进一步提高激发态的精度指明了方向.
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91334205)和国家自然科学基金联合基金(批准号:11178008)资助的课题.
    [1]

    Lee T D 2005 J. Stat. Phys. 121 1015

    [2]

    Friedberg R, Lee T D, Zhao W Q 2006 Chin. Phys. 15 1909

    [3]

    Bunge C F 2006 J. Chem. phys. 125 014107

    [4]

    Cioslowski J 1987 J. Chem. phys. 86 2105

    [5]

    Gou B C, Chen Z, Lin C D 1991 Phys. Rev. A 43 3260

    [6]

    Kallman T R, Palmer P 2007 Rev. Mod. Phys. 79 79

    [7]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [8]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [9]

    Qing Bo, Cheng Cheng, Gao Xiang, Zhang Xiao Le, Li Jia Ming 2010 Acta Phys. Sin. 59 7 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 7]

    [10]

    Hylleraas E, Undheim B 1930 Z. Phys. 65 759

    [11]

    McDonald J K L 1933 Phys. Rev. 43 830

    [12]

    Pilar F L 1968 Elementary Quantum Chemistry (Dover: McGraw-Hill Companies) p240

    [13]

    Harald Friedrich 1990 Theoretical Atomic Physics (Berlin: Springer-Verlag) p45

    [14]

    Newton R G 1982 Scattering Theory of Waves and Particles (2nd Ed.) (New York, Berlin, Heidelberg: Spring-Verlag) p326

    [15]

    Bacalis N C, Xiong Z, Karaoulanisc D 2008 Journal of Computational Methods in Sciences and Engineering 8 277

    [16]

    Chen M K 1994 J. Phys. B: At. Mol. Opt. Phys. 27 865

    [17]

    Bacalis N C 2007 Computation in Modern Science and Engineering CP963 Vol.2 Part A pp6-9

    [18]

    Li Z M, Xiong Z, Dai L L 2010 Acta Phys. Sin. 59 11 (in Chinese) [李尊懋, 熊庄, 代丽丽 2010 物理学报 59 11]

    [19]

    Ma Y, Xiong Z, Wang Z X 2013 Chinese Journal of Computational Physics 30 2 (in Chinese) [马迎, 熊庄, 汪振新 2013 计算物理 30 2]

  • [1]

    Lee T D 2005 J. Stat. Phys. 121 1015

    [2]

    Friedberg R, Lee T D, Zhao W Q 2006 Chin. Phys. 15 1909

    [3]

    Bunge C F 2006 J. Chem. phys. 125 014107

    [4]

    Cioslowski J 1987 J. Chem. phys. 86 2105

    [5]

    Gou B C, Chen Z, Lin C D 1991 Phys. Rev. A 43 3260

    [6]

    Kallman T R, Palmer P 2007 Rev. Mod. Phys. 79 79

    [7]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [8]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [9]

    Qing Bo, Cheng Cheng, Gao Xiang, Zhang Xiao Le, Li Jia Ming 2010 Acta Phys. Sin. 59 7 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 7]

    [10]

    Hylleraas E, Undheim B 1930 Z. Phys. 65 759

    [11]

    McDonald J K L 1933 Phys. Rev. 43 830

    [12]

    Pilar F L 1968 Elementary Quantum Chemistry (Dover: McGraw-Hill Companies) p240

    [13]

    Harald Friedrich 1990 Theoretical Atomic Physics (Berlin: Springer-Verlag) p45

    [14]

    Newton R G 1982 Scattering Theory of Waves and Particles (2nd Ed.) (New York, Berlin, Heidelberg: Spring-Verlag) p326

    [15]

    Bacalis N C, Xiong Z, Karaoulanisc D 2008 Journal of Computational Methods in Sciences and Engineering 8 277

    [16]

    Chen M K 1994 J. Phys. B: At. Mol. Opt. Phys. 27 865

    [17]

    Bacalis N C 2007 Computation in Modern Science and Engineering CP963 Vol.2 Part A pp6-9

    [18]

    Li Z M, Xiong Z, Dai L L 2010 Acta Phys. Sin. 59 11 (in Chinese) [李尊懋, 熊庄, 代丽丽 2010 物理学报 59 11]

    [19]

    Ma Y, Xiong Z, Wang Z X 2013 Chinese Journal of Computational Physics 30 2 (in Chinese) [马迎, 熊庄, 汪振新 2013 计算物理 30 2]

  • [1] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [2] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
  • 引用本文:
    Citation:
计量
  • 文章访问数:  585
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-01
  • 修回日期:  2013-11-22
  • 刊出日期:  2014-03-05

基于改进变分法对原子激发态精确波函数的研究

  • 1. 东南大学空间科学与技术研究院, 南京 210096;
  • 2. 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096;
  • 3. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, GR-116 35 Athens, Greece
    基金项目: 

    国家自然科学基金重大研究计划(批准号:91334205)和国家自然科学基金联合基金(批准号:11178008)资助的课题.

摘要: 传统的利用变分原理求解Schrdinger方程获得原子激发态波函数的方法是基于HUM理论(Hylleraas-Undheim and MacDonald theorem),在有限的N维Hilbert空间中,通过求解久期方程的高阶根获得激发态的近似波函数. 在我们前期的工作中已指出,由于HUM方法的几个内禀缺陷限制,它将导致在相同的函数空间中,由传统变分法得到的激发态波函数的质量远差于足够好的基态波函数. 进一步地,为了避免基于HUM方法的变分缺陷,本文提出了新的变分函数,并证明其试探激发态波函数在其本征态处具有局域极小值,因而可以通过变分极小无限制的逼近该本征态. 在此基础上,利用广义的Laguerre类型轨道(GLTO)在组态相互作用的框架下,分别编写了基于传统HUM理论和新变分函数的关于求解原子近似波函数的计算程序,并且利用该程序计算了氦原子(He)在1S(e),1P(o)态下相应的基态及激发态近似波函数及对应的能量值和径向平均值,并与已有文献中结果进行比较,计算结果显示了HUM理论的缺陷及新变分函数优越性,并就进一步提高激发态的精度指明了方向.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回