搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构

石艳梅 刘继芝 姚素英 丁燕红

引用本文:
Citation:

具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构

石艳梅, 刘继芝, 姚素英, 丁燕红

A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate

Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong
PDF
导出引用
  • 为降低绝缘体上硅(SOI)横向双扩散金属氧化物半导体(LDMOS)器件的导通电阻,同时提高器件击穿电压,提出了一种具有纵向漏极场板的低导通电阻槽栅槽漏SOI-LDMOS器件新结构. 该结构特征为采用了槽栅槽漏结构,在纵向上扩展了电流传导区域,在横向上缩短了电流传导路径,降低了器件导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,从而减弱了漏极末端的高电场,提高了器件的击穿电压. 利用二维数值仿真软件MEDICI对新结构与具有相同器件尺寸的传统SOI结构、槽栅SOI结构、槽栅槽漏SOI 结构进行了比较. 结果表明:在保证各自最高优值的条件下,与这三种结构相比,新结构的比导通电阻分别降低了53%,23%和提高了87%,击穿电压则分别提高了4%、降低了9%、提高了45%. 比较四种结构的优值,具有纵向漏极场板的槽栅槽漏SOI结构优值最高,这表明在四种结构中新结构保持了较低导通电阻,同时又具有较高的击穿电压.
    To reduce the on-resistance and enhance the breakdown voltage of silicon on insulator (SOI) lateral double diffused metal oxide semiconductor (LDMOS) device at the same time, a low on-resistance SOI-LDMOS device with a vertical drain field plate and trench gate and trench drain (VFP-TGTD-SOI-LDMOS) is proposed. The device has the features as follows: first, a trench gate and a trench drain are adopted, which can widen the vertical current conduction area, shorten the lateral current conduction path, and lower the on-resistance. Secondly, a vertical field plate is used, which modulates the electric field around it, reduces the high electric field at the end of the drain electrode, and increases the breakdown voltage. The VFP-TGTD-SOI device is compared with a conventional SOI device, a trench gate SOI device, a trench gate and trench drain SOI device with the same dimensional device parameters using the two-dimensional semiconductor simulator MEDICI. The results show that under the condition of their own highest figure of merit (FOM), the specific on-resistance value of the VFP-TGTD-SOI device is reduced by 53%, 23%, and increased by 87%, respectively and the breakdown voltage is increased by 4% and reduced by 9% and increased by 45%, respectively. By comparing the FOMs of the four structures, it can be seen that the VFP-TGTD-SOI device has the highest FOM, which indicates that among the four structures, it maintains the lower on-resistance and holds the higher breakdown voltage at the same time.
    • 基金项目: 国家自然科学基金(批准号:51101113)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51101113).
    [1]

    Tan Y, Cai J, Sin Johnny K O 2001 IEEE Trans. Electron Dev. 48 2428

    [2]

    Bi J S, Hai C H, Han Z S 2011 Acta Phys. Sin. 60 018501 (in Chinese) [毕津顺, 海潮和, 韩郑生 2011 60 018501]

    [3]

    Wang Y G, Luo X R, Ge R, Wu L J, Chen X, Yao G L, Lei T F, Wang Q, Fan J, Hu X R 2011 Chin. Phys. B 20 077304

    [4]

    Luo X R, Zhang B, Li Z J, Guo Y F, Tang X W, Liu Y 2007 IEEE Electron Dev. Lett. 28 422

    [5]

    Li Q, Zhang B, Li Z J 2008 Acta Phys. Sin. 57 6565 (in Chinese) [李琦, 张波, 李肇基 2008 物理学报 57 6565]

    [6]

    Wu L J, Hu S D, Zhang B, Luo X R, Li Z J 2011 Chin. Phys. B 20 087101

    [7]

    Wu L J, Zhang W T, Zhang B, Li Z J 2013 J. Semicond. 34 044008

    [8]

    Hu C 1979 IEEE Trans. Electron Dev. 26 243

    [9]

    Kawaguchi Y, Sano T, Nakagawa A 1999 IEEE International Electron Devices Meeting Washington DC, USA, December 5-8, 1999 p197

    [10]

    Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Dev. Lett. 31 464

    [11]

    Luo X R, Yao G L, Zhang Z Y, Jiang Y H, Zhou K, Wang P, Wang Y G, Lei T F, Zhang Y X, Wei J 2012 Chin. Phys. B 21 068501

    [12]

    Yue L, Zhang B, Li Z J 2012 IEEE Electron Dev. Lett. 33 1174

    [13]

    Luo X R, Lei T F, Wang Y G, Yao G L, Jiang Y H, Zhou K, Wang P, Zhang Z Y 2012 IEEE Trans. Electron Dev. 59 504

    [14]

    Luo X R, Fan J, Wang Y G, Lei T F, Qiao M, Zhang B, Udrea F 2011 IEEE Electron Dev. Lett. 32 185

    [15]

    Baba Y, Yanagiya S, Koshino Y, Udo Y 1994 Proceedings of the 6th International Power Semiconductor Devices and ICs Davos, Switzerland, May 31-June 2, 1994 p183

    [16]

    Kim S L, Yang H Y, Choi Y I 2000 Proceedings of the 22nd International Conference on Microelectronics Nis, Serbia, May 14-17, 2000 p641

    [17]

    Ge R, Luo X R, Jiang Y H, Zhou K, Wang P, Wang Q, Wang Y G, Zhang B, Li Z J 2012 J. Semicond. 33 074005

    [18]

    Zhang H P, Jiang L F, Sun L L, Li W J, Zhou L, Hua B X, Xu L Y, Lin M 2007 International Symposium on Communications and Information Technologies Sydney, Australia, October 17-19, 2007 p34

  • [1]

    Tan Y, Cai J, Sin Johnny K O 2001 IEEE Trans. Electron Dev. 48 2428

    [2]

    Bi J S, Hai C H, Han Z S 2011 Acta Phys. Sin. 60 018501 (in Chinese) [毕津顺, 海潮和, 韩郑生 2011 60 018501]

    [3]

    Wang Y G, Luo X R, Ge R, Wu L J, Chen X, Yao G L, Lei T F, Wang Q, Fan J, Hu X R 2011 Chin. Phys. B 20 077304

    [4]

    Luo X R, Zhang B, Li Z J, Guo Y F, Tang X W, Liu Y 2007 IEEE Electron Dev. Lett. 28 422

    [5]

    Li Q, Zhang B, Li Z J 2008 Acta Phys. Sin. 57 6565 (in Chinese) [李琦, 张波, 李肇基 2008 物理学报 57 6565]

    [6]

    Wu L J, Hu S D, Zhang B, Luo X R, Li Z J 2011 Chin. Phys. B 20 087101

    [7]

    Wu L J, Zhang W T, Zhang B, Li Z J 2013 J. Semicond. 34 044008

    [8]

    Hu C 1979 IEEE Trans. Electron Dev. 26 243

    [9]

    Kawaguchi Y, Sano T, Nakagawa A 1999 IEEE International Electron Devices Meeting Washington DC, USA, December 5-8, 1999 p197

    [10]

    Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Dev. Lett. 31 464

    [11]

    Luo X R, Yao G L, Zhang Z Y, Jiang Y H, Zhou K, Wang P, Wang Y G, Lei T F, Zhang Y X, Wei J 2012 Chin. Phys. B 21 068501

    [12]

    Yue L, Zhang B, Li Z J 2012 IEEE Electron Dev. Lett. 33 1174

    [13]

    Luo X R, Lei T F, Wang Y G, Yao G L, Jiang Y H, Zhou K, Wang P, Zhang Z Y 2012 IEEE Trans. Electron Dev. 59 504

    [14]

    Luo X R, Fan J, Wang Y G, Lei T F, Qiao M, Zhang B, Udrea F 2011 IEEE Electron Dev. Lett. 32 185

    [15]

    Baba Y, Yanagiya S, Koshino Y, Udo Y 1994 Proceedings of the 6th International Power Semiconductor Devices and ICs Davos, Switzerland, May 31-June 2, 1994 p183

    [16]

    Kim S L, Yang H Y, Choi Y I 2000 Proceedings of the 22nd International Conference on Microelectronics Nis, Serbia, May 14-17, 2000 p641

    [17]

    Ge R, Luo X R, Jiang Y H, Zhou K, Wang P, Wang Q, Wang Y G, Zhang B, Li Z J 2012 J. Semicond. 33 074005

    [18]

    Zhang H P, Jiang L F, Sun L L, Li W J, Zhou L, Hua B X, Xu L Y, Lin M 2007 International Symposium on Communications and Information Technologies Sydney, Australia, October 17-19, 2007 p34

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 唐春萍, 段宝兴, 宋坤, 王彦东, 杨银堂. 衬底浮空的新型绝缘体上硅基横向功率器件分析. 物理学报, 2021, 70(14): 148501. doi: 10.7498/aps.70.20202065
    [3] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响. 物理学报, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [4] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [5] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [6] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管. 物理学报, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [7] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [8] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件. 物理学报, 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [9] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件. 物理学报, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [10] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究. 物理学报, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [11] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [12] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [13] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [14] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [15] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计. 物理学报, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析. 物理学报, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [18] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  4642
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-22
  • 修回日期:  2014-01-22
  • 刊出日期:  2014-05-05

/

返回文章
返回