搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量高取向(100)面金刚石膜的可控性生长

刘聪 汪建华 翁俊

高质量高取向(100)面金刚石膜的可控性生长

刘聪, 汪建华, 翁俊
PDF
导出引用
  • 应用微波等离子体化学气相沉积技术, 在低气压下对(100)晶面金刚石膜的表面形貌、质量、取向和生长率进行了可控性生长研究. 结果表明: 基片温度与甲烷浓度对(100)晶面金刚石膜的生长存在耦合规律. 为了获得表面形貌相似的(100)晶面金刚石膜, 在沉积过程中, 增加碳源浓度的同时需要同时升高基片温度; 当甲烷浓度为3.0%, 基片温度从740 ℃上升至1100 ℃ 的过程中, 金刚石膜的晶面取向变化可分为五个阶段, 其中当基片温度在860 ℃至930 ℃时, 很适合高取向(100)晶面金刚石膜生长; 另外, 金刚石膜的质量和生长速率分别与基片温度和甲烷浓度成正比. 为了获得高质量高取向(100)晶面金刚石膜, 应当选择合适的基片温度和甲烷浓度.
    • 基金项目: 国家自然科学基金(批准号: 11175137)和武汉工程大学研究基金(批准号: 11111051)资助的课题.
    [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 物理学报 62 075202]

    [2]

    Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365

    [3]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [4]

    Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]

    [5]

    Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258

    [6]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756]

    [7]

    Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529

    [8]

    Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]

    [9]

    Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269

    [10]

    Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]

    [11]

    Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]

    [12]

    Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63

    [13]

    Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15

    [14]

    Das D, Singh R N 2007 Int. Mater. Rev. 52 29

    [15]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [16]

    Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379

    [17]

    Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102

    [18]

    Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729

    [19]

    Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64

    [20]

    Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340

    [21]

    Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179

    [22]

    Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300

  • [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 物理学报 62 075202]

    [2]

    Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365

    [3]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [4]

    Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]

    [5]

    Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258

    [6]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756]

    [7]

    Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529

    [8]

    Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]

    [9]

    Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269

    [10]

    Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]

    [11]

    Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]

    [12]

    Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63

    [13]

    Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15

    [14]

    Das D, Singh R N 2007 Int. Mater. Rev. 52 29

    [15]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [16]

    Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379

    [17]

    Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102

    [18]

    Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729

    [19]

    Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64

    [20]

    Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340

    [21]

    Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179

    [22]

    Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2350
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-16
  • 修回日期:  2014-09-10
  • 刊出日期:  2015-01-05

高质量高取向(100)面金刚石膜的可控性生长

  • 1. 武汉工程大学, 湖北省等离子体化学与新材料重点实验室, 武汉 430073;
  • 2. 中国科学院等离子体物理研究所, 合肥 230031
    基金项目: 

    国家自然科学基金(批准号: 11175137)和武汉工程大学研究基金(批准号: 11111051)资助的课题.

摘要: 应用微波等离子体化学气相沉积技术, 在低气压下对(100)晶面金刚石膜的表面形貌、质量、取向和生长率进行了可控性生长研究. 结果表明: 基片温度与甲烷浓度对(100)晶面金刚石膜的生长存在耦合规律. 为了获得表面形貌相似的(100)晶面金刚石膜, 在沉积过程中, 增加碳源浓度的同时需要同时升高基片温度; 当甲烷浓度为3.0%, 基片温度从740 ℃上升至1100 ℃ 的过程中, 金刚石膜的晶面取向变化可分为五个阶段, 其中当基片温度在860 ℃至930 ℃时, 很适合高取向(100)晶面金刚石膜生长; 另外, 金刚石膜的质量和生长速率分别与基片温度和甲烷浓度成正比. 为了获得高质量高取向(100)晶面金刚石膜, 应当选择合适的基片温度和甲烷浓度.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回