搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短管螺旋波放电中等离子体参数测量和模式转化研究

赵高 熊玉卿 马超 刘忠伟 陈强

短管螺旋波放电中等离子体参数测量和模式转化研究

赵高, 熊玉卿, 马超, 刘忠伟, 陈强
PDF
导出引用
导出核心图
  • 对长度为45 cm的短放电管螺旋波放电等离子体进行了Langmuir探针、原子发射光谱以及集成电荷耦合检测器(ICCD)检测诊断, 研究螺旋波等离子体的放电特性. Langmuir探针数据显示电子密度在射频功率增加过程中出现两次大幅增长, 由此确认了放电模式的转换及螺旋波放电模式的出现. 发射光谱测量结果与Langmuir探针测量的电子密度数据一致, 发现Ar原子和Ar离子的谱线强度与放电模式变化有着密切相关性. 而通过对不同放电模式的ICCD测量, 获得射频功率吸收因放电模式转变而变化的方式, 认为放电模式转换时电子行为和能量传递方式也发生着变化.
    • 基金项目: 国家自然科学基金(批准号:11175024,11375031)、科技部十二五科技支撑项目(批准号:2011BAD24B01)、国家科技支撑计划(批准号:E-b-2012-40)、北京印刷学院重点项目(批准号:23190113051)、北京印刷学院科研基金和真空技术与物理重点实验室开放基金资助的课题.
    [1]

    Aigrain P 1960 Proceeding of the International Conference Semiconductor Physics Prague, Czechoslovakia, 1960 p224

    [2]

    Boswell R W 1970 Phys. Lett. A 33 457

    [3]

    Fang T Z 1998 Physics 28 163 (in Chinese) [房同珍1998物理28 163]

    [4]

    Porte L, Yun S M, Arnush D, Chen F F 2003 Plasma Source Sci. Technol. 12 287

    [5]

    Chen F F 2003 Phys. Plasmas 10 2586

    [6]

    Sudit I D, Chen F F 1996 Plasma Source Sci. Technol. 5 43

    [7]

    Niemi K, Krämer M 2008 Phys. Plasmas 15 073503

    [8]

    Fang T Z, Wang L, Jiang D M, Zhang H X 2001 Chin. Phys. Lett. 18 1098

    [9]

    Fang T Z, Jiang N, Wang L 2005 Chin. Phys. 14 2256

    [10]

    Franck C M, Grulke O, Klinger T 2003 Phys. Plasmas 10 323

    [11]

    Boswell R W, Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229

    [12]

    Chen F F, Torreblanca H 2007 Plasma Phys. Control Fusion 49 A81

    [13]

    Lafleur T, Charles C, Boswell R W 2011 J. Phys. D: Appl. Phys. 44 055202

    [14]

    Lafleur T, Charles C, Boswell R W 2011 J. Phys. D: Appl. Phys. 44 185204

    [15]

    Bo Y, Zhao Y, Jin C G, Yu T, Wu X M, Zhuge L J 2011 Micronano Electron. Technol. 48 739 (in Chinese) [柏洋, 赵岩, 金成刚, 余涛, 吴雪梅, 诸葛兰剑2011微纳电子技术 48 739]

    [16]

    Xia G Q, Wang D X, Xue W H, Zhang J L 2011 J. Propuls. Technol. 32 857 (in Chinese) [夏广庆, 王冬雪, 薛伟华, 张家良2011推进技术 32 857]

    [17]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese) [成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [18]

    Tysk S M, Denning C M, Scharer J E, White B O, Akhtar M K 2003 15th Topical Conference on RF Power Moran, USA, May 19-21, 2003 p427

    [19]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p142 (in Chinese) [力伯曼M A, 里登伯格A J著(蒲以康译) 2007 等离子体放电物理与材料 (北京: 科学出版社) 第142页]

    [20]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792

    [21]

    Ellingboe A R, Boswell R W 1995 Phys. Plasmas 2 1807

    [22]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245

    [23]

    Ellingboe A R, Boswell R W 1996 Phys. Plasmas 3 2797

  • [1]

    Aigrain P 1960 Proceeding of the International Conference Semiconductor Physics Prague, Czechoslovakia, 1960 p224

    [2]

    Boswell R W 1970 Phys. Lett. A 33 457

    [3]

    Fang T Z 1998 Physics 28 163 (in Chinese) [房同珍1998物理28 163]

    [4]

    Porte L, Yun S M, Arnush D, Chen F F 2003 Plasma Source Sci. Technol. 12 287

    [5]

    Chen F F 2003 Phys. Plasmas 10 2586

    [6]

    Sudit I D, Chen F F 1996 Plasma Source Sci. Technol. 5 43

    [7]

    Niemi K, Krämer M 2008 Phys. Plasmas 15 073503

    [8]

    Fang T Z, Wang L, Jiang D M, Zhang H X 2001 Chin. Phys. Lett. 18 1098

    [9]

    Fang T Z, Jiang N, Wang L 2005 Chin. Phys. 14 2256

    [10]

    Franck C M, Grulke O, Klinger T 2003 Phys. Plasmas 10 323

    [11]

    Boswell R W, Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229

    [12]

    Chen F F, Torreblanca H 2007 Plasma Phys. Control Fusion 49 A81

    [13]

    Lafleur T, Charles C, Boswell R W 2011 J. Phys. D: Appl. Phys. 44 055202

    [14]

    Lafleur T, Charles C, Boswell R W 2011 J. Phys. D: Appl. Phys. 44 185204

    [15]

    Bo Y, Zhao Y, Jin C G, Yu T, Wu X M, Zhuge L J 2011 Micronano Electron. Technol. 48 739 (in Chinese) [柏洋, 赵岩, 金成刚, 余涛, 吴雪梅, 诸葛兰剑2011微纳电子技术 48 739]

    [16]

    Xia G Q, Wang D X, Xue W H, Zhang J L 2011 J. Propuls. Technol. 32 857 (in Chinese) [夏广庆, 王冬雪, 薛伟华, 张家良2011推进技术 32 857]

    [17]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese) [成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [18]

    Tysk S M, Denning C M, Scharer J E, White B O, Akhtar M K 2003 15th Topical Conference on RF Power Moran, USA, May 19-21, 2003 p427

    [19]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p142 (in Chinese) [力伯曼M A, 里登伯格A J著(蒲以康译) 2007 等离子体放电物理与材料 (北京: 科学出版社) 第142页]

    [20]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792

    [21]

    Ellingboe A R, Boswell R W 1995 Phys. Plasmas 2 1807

    [22]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245

    [23]

    Ellingboe A R, Boswell R W 1996 Phys. Plasmas 3 2797

  • [1] 张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗. 氦氩射频容性放电发射光谱分析. 物理学报, 2018, 67(14): 145202. doi: 10.7498/aps.67.20180274
    [2] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [3] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [4] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计. 物理学报, 1974, 23(3): 3-12. doi: 10.7498/aps.23.3
    [5] 方守贤, 魏开煜. 螺旋线迴旋加速器中粒子径向自由振荡的静态分析. 物理学报, 1964, 20(4): 305-310. doi: 10.7498/aps.20.305
    [6] 殷敬伟, 杜鹏宇, 张晓, 朱广平. 基于单矢量差分能量检测器的扩频水声通信. 物理学报, 2016, 65(4): 044302. doi: 10.7498/aps.65.044302
    [7] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [8] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [9] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [10] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [11] 彭志敏, 丁艳军, 翟晓东. 基于火焰发射光谱的转动温度和振动温度的测量. 物理学报, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [12] 高勋, 宋晓伟, 陶海岩, 林景全, 郭凯敏. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [14] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [15] 崔执凤, 赵献章, 陆同兴, 陈旸, 陆庆正, 马兴孝. 气相CCl2自由基的发射光谱. 物理学报, 1992, 41(10): 1582-1589. doi: 10.7498/aps.41.1582
    [16] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究. 物理学报, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [17] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [18] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [19] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究. 物理学报, 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [20] 于 威, 王保柱, 杨彦斌, 路万兵, 傅广生. 螺旋波等离子体化学气相沉积纳米硅薄膜的光学发射谱研究. 物理学报, 2005, 54(5): 2394-2398. doi: 10.7498/aps.54.2394
  • 引用本文:
    Citation:
计量
  • 文章访问数:  783
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-18
  • 修回日期:  2014-06-29
  • 刊出日期:  2014-12-05

短管螺旋波放电中等离子体参数测量和模式转化研究

  • 1. 北京印刷学院等离子体物理及材料研究室, 北京 102600;
  • 2. 兰州物理研究所, 真空技术与物理重点实验室, 兰州 730000
    基金项目: 

    国家自然科学基金(批准号:11175024,11375031)、科技部十二五科技支撑项目(批准号:2011BAD24B01)、国家科技支撑计划(批准号:E-b-2012-40)、北京印刷学院重点项目(批准号:23190113051)、北京印刷学院科研基金和真空技术与物理重点实验室开放基金资助的课题.

摘要: 对长度为45 cm的短放电管螺旋波放电等离子体进行了Langmuir探针、原子发射光谱以及集成电荷耦合检测器(ICCD)检测诊断, 研究螺旋波等离子体的放电特性. Langmuir探针数据显示电子密度在射频功率增加过程中出现两次大幅增长, 由此确认了放电模式的转换及螺旋波放电模式的出现. 发射光谱测量结果与Langmuir探针测量的电子密度数据一致, 发现Ar原子和Ar离子的谱线强度与放电模式变化有着密切相关性. 而通过对不同放电模式的ICCD测量, 获得射频功率吸收因放电模式转变而变化的方式, 认为放电模式转换时电子行为和能量传递方式也发生着变化.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回