搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深过冷液态Al-Ni合金中枝晶与共晶生长机理

杨尚京 王伟丽 魏炳波

深过冷液态Al-Ni合金中枝晶与共晶生长机理

杨尚京, 王伟丽, 魏炳波
PDF
导出引用
  • 在自由落体条件下实现了液态Al-4 wt.%Ni亚共晶、Al-5.69 wt.%Ni共晶和Al-8 wt.%Ni过共晶合金的深过冷与快速凝固. 计算表明, (Al+Al3Ni)规则纤维状共晶的共生区是4.8–15 wt.%Ni成分范围内不闭合区域, 且强烈偏向Al3Ni相一侧. 实验发现, 随液滴直径的减小, 合金熔体冷却速率和过冷度增大, (Al)和Al3Ni相枝晶与其共晶的竞争生长引发了Al-Ni 共晶型合金微观组织演化. 在快速凝固过程中, Al-4 wt.%Ni亚共晶合金发生完全溶质截留效应, 从而形成亚稳单相固溶体. 当过冷度超过58K时, Al-5.69 wt.%Ni 共晶合金呈现从纤维状共晶向初生(Al) 枝晶为主的亚共晶组织演变. 若过冷度连续增大, Al-8 wt.%Ni过共晶合金可以形成全部纤维状共晶组织, 并且最终演变为粒状共晶.
    • 基金项目: 国家自然科学基金(批准号: 51371150, 51271150, 51101123)资助的课题.
    [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J Q 2012 Phy. Rev. Lett. 108 096102

    [3]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [4]

    Pasturel A, Tasci E S, Sluiter M H F, Jakse N 2010 Phys. Rev. B 81

    [5]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 2797 [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [6]

    Park J M, Sohn S W, Kim D H, Kim K B, Kim W T, Eckert J 2008 Appl. Phys. Lett. 92 091910

    [7]

    Lu Y P, Lin X, Yang G C, Li J J, Zhou Y H 2008 J. Appl. Phys. 104 013535

    [8]

    Zhou S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1674

    [9]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [10]

    Lv Y J, Wei B B 2003 Chin. Phys. Lett. 20 1379

    [11]

    Yang T Y, Wu S K, Shiue R K 2001 Intermetallics 9 341

    [12]

    Chrifi-Alaoui F Z, Nassik M, Mahdouk K, Gachon J C 2004 J. Alloy. Compd. 364 121

    [13]

    Silva B L, Araujo J C, Silva W S, Goulart P R, Garcia A, Spinelli J E 2011 Phil. Mag. Lett. 91 337

    [14]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [15]

    Nishiyama N, Takenaka, Inoue A 2006 Appl. Phys. Lett. 88 121908

    [16]

    Liu J, Zhao J Z, Hu Z Q 2006 Appl. Phys. Lett. 89 031903

    [17]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [18]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [19]

    Boetinger W J, Coriell S R, Trivedi R 1987 in: R. Mehrabian (Eds.), Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies, Claitors, Baton Rouge p13

    [20]

    Yan N, Wang W L, Dai F P, Wei B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [21]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desre P J 1998 Phys. Rev. B 57 3340

    [22]

    Cortella L, Vinet B, Desre P J, Pasturel A, Paxton A T, Vanschilfgaarde M 1993 Phy. Rev. Lett. 70 1469

    [23]

    Levi C G, Mehrabian R 1990 Metall. Trans. 21 59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

  • [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J Q 2012 Phy. Rev. Lett. 108 096102

    [3]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [4]

    Pasturel A, Tasci E S, Sluiter M H F, Jakse N 2010 Phys. Rev. B 81

    [5]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 2797 [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [6]

    Park J M, Sohn S W, Kim D H, Kim K B, Kim W T, Eckert J 2008 Appl. Phys. Lett. 92 091910

    [7]

    Lu Y P, Lin X, Yang G C, Li J J, Zhou Y H 2008 J. Appl. Phys. 104 013535

    [8]

    Zhou S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1674

    [9]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [10]

    Lv Y J, Wei B B 2003 Chin. Phys. Lett. 20 1379

    [11]

    Yang T Y, Wu S K, Shiue R K 2001 Intermetallics 9 341

    [12]

    Chrifi-Alaoui F Z, Nassik M, Mahdouk K, Gachon J C 2004 J. Alloy. Compd. 364 121

    [13]

    Silva B L, Araujo J C, Silva W S, Goulart P R, Garcia A, Spinelli J E 2011 Phil. Mag. Lett. 91 337

    [14]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [15]

    Nishiyama N, Takenaka, Inoue A 2006 Appl. Phys. Lett. 88 121908

    [16]

    Liu J, Zhao J Z, Hu Z Q 2006 Appl. Phys. Lett. 89 031903

    [17]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [18]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [19]

    Boetinger W J, Coriell S R, Trivedi R 1987 in: R. Mehrabian (Eds.), Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies, Claitors, Baton Rouge p13

    [20]

    Yan N, Wang W L, Dai F P, Wei B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [21]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desre P J 1998 Phys. Rev. B 57 3340

    [22]

    Cortella L, Vinet B, Desre P J, Pasturel A, Paxton A T, Vanschilfgaarde M 1993 Phy. Rev. Lett. 70 1469

    [23]

    Levi C G, Mehrabian R 1990 Metall. Trans. 21 59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1515
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2014-10-02
  • 刊出日期:  2015-03-05

深过冷液态Al-Ni合金中枝晶与共晶生长机理

  • 1. 西北工业大学应用物理系, 西安 710072
    基金项目: 

    国家自然科学基金(批准号: 51371150, 51271150, 51101123)资助的课题.

摘要: 在自由落体条件下实现了液态Al-4 wt.%Ni亚共晶、Al-5.69 wt.%Ni共晶和Al-8 wt.%Ni过共晶合金的深过冷与快速凝固. 计算表明, (Al+Al3Ni)规则纤维状共晶的共生区是4.8–15 wt.%Ni成分范围内不闭合区域, 且强烈偏向Al3Ni相一侧. 实验发现, 随液滴直径的减小, 合金熔体冷却速率和过冷度增大, (Al)和Al3Ni相枝晶与其共晶的竞争生长引发了Al-Ni 共晶型合金微观组织演化. 在快速凝固过程中, Al-4 wt.%Ni亚共晶合金发生完全溶质截留效应, 从而形成亚稳单相固溶体. 当过冷度超过58K时, Al-5.69 wt.%Ni 共晶合金呈现从纤维状共晶向初生(Al) 枝晶为主的亚共晶组织演变. 若过冷度连续增大, Al-8 wt.%Ni过共晶合金可以形成全部纤维状共晶组织, 并且最终演变为粒状共晶.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回