搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非马尔科夫耗散系统长时演化下的极限环振荡现象

游波 岑理相

非马尔科夫耗散系统长时演化下的极限环振荡现象

游波, 岑理相
PDF
导出引用
导出核心图
  • 本文研究结构化环境中非马尔科夫耗散系统在长时演化下可能出现的极限环振荡现象. 对于欧姆型谱密度环境中的二能级系统, 由于体系只允许一个束缚态模, 给定初态系统在Bloch空间的长时演化将收敛于一个极限环. 研究揭示了极限环半径与环心位置同环境谱密度函数间的关系. 对于多带光子晶体环境中的二能级系统, 由于其可以存在多个束缚态, 研究展现了系统在长时演化下可能出现的收敛于环面或周期或准周期的振荡行为. 有关环面的特征量与环境谱密度间的量化关系同样得以刻画. 论文随后讨论了两比特系统关联量在局域非马尔科夫耗散环境中长时演化可能出现的特征行为.
      通信作者: 岑理相, lixiangcen@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 10874254)资助的课题.
    [1]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (London: Oxford University Press) pp460-498

    [2]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [3]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [4]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [5]

    Kofman A G, Kurizki G, Sherman B 1994 J. Mod. Opt. 41 353

    [6]

    Kofman A G, Kurizki G 1996 Phys. Rev. A 54 R3750

    [7]

    Chen S, Xie S Y, Yang Y P, Chen H 2003 Acta Phys. Sin. 52 853 (in Chinese) [陈三, 谢双媛, 羊亚平, 陈鸿 2003 物理学报 52 853]

    [8]

    Lodahl P, Driel A F van, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Xu X, Yamada T, Ueda R, Otomo A 2008 Opt. Lett. 33 1768

    [10]

    Hoeppe U, Wolff C, Kchenmeister J, Niegemann J, Drescher M, Benner H, Busch K 2012 Phys. Rev. Lett. 108 043603

    [11]

    Bellomo B, Franco R Lo, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [12]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [13]

    Rivas á, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [14]

    Tong Q J, An J H, Luo H G, Oh C H 2010 Phys. Rev. A 81 052330

    [15]

    Zhang P, You B, Cen L X 2013 Opt. Lett. 38 3650

    [16]

    Zhang P, You B, Cen L X 2014 Chin. Sci. Bull. 59 3841

    [17]

    Perko L 2001 Differential Equations and Dynamical Systems (New York: Springer-Verlag) pp315-540

  • [1]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (London: Oxford University Press) pp460-498

    [2]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [3]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [4]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [5]

    Kofman A G, Kurizki G, Sherman B 1994 J. Mod. Opt. 41 353

    [6]

    Kofman A G, Kurizki G 1996 Phys. Rev. A 54 R3750

    [7]

    Chen S, Xie S Y, Yang Y P, Chen H 2003 Acta Phys. Sin. 52 853 (in Chinese) [陈三, 谢双媛, 羊亚平, 陈鸿 2003 物理学报 52 853]

    [8]

    Lodahl P, Driel A F van, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Xu X, Yamada T, Ueda R, Otomo A 2008 Opt. Lett. 33 1768

    [10]

    Hoeppe U, Wolff C, Kchenmeister J, Niegemann J, Drescher M, Benner H, Busch K 2012 Phys. Rev. Lett. 108 043603

    [11]

    Bellomo B, Franco R Lo, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [12]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [13]

    Rivas á, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [14]

    Tong Q J, An J H, Luo H G, Oh C H 2010 Phys. Rev. A 81 052330

    [15]

    Zhang P, You B, Cen L X 2013 Opt. Lett. 38 3650

    [16]

    Zhang P, You B, Cen L X 2014 Chin. Sci. Bull. 59 3841

    [17]

    Perko L 2001 Differential Equations and Dynamical Systems (New York: Springer-Verlag) pp315-540

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1300
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-11-05

非马尔科夫耗散系统长时演化下的极限环振荡现象

  • 1. 四川大学物理科学与技术学院, 成都 610065
  • 通信作者: 岑理相, lixiangcen@scu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 10874254)资助的课题.

摘要: 本文研究结构化环境中非马尔科夫耗散系统在长时演化下可能出现的极限环振荡现象. 对于欧姆型谱密度环境中的二能级系统, 由于体系只允许一个束缚态模, 给定初态系统在Bloch空间的长时演化将收敛于一个极限环. 研究揭示了极限环半径与环心位置同环境谱密度函数间的关系. 对于多带光子晶体环境中的二能级系统, 由于其可以存在多个束缚态, 研究展现了系统在长时演化下可能出现的收敛于环面或周期或准周期的振荡行为. 有关环面的特征量与环境谱密度间的量化关系同样得以刻画. 论文随后讨论了两比特系统关联量在局域非马尔科夫耗散环境中长时演化可能出现的特征行为.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回