搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究

李立明 宁锋 唐黎明

量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究

李立明, 宁锋, 唐黎明
PDF
导出引用
导出核心图
  • 采用基于密度泛函理论的第一性原理计算方法, 研究了不同晶体结构和尺寸的GaSb纳米线能带结构特性和载流子的有效质量, 以及单轴应力对GaSb纳米线能带结构的调控. 研究结果表明: 闪锌矿结构[111]方向和纤锌矿结构[0001]方向的小尺寸GaSb纳米线均出现间接带隙的能带结构, 并可通过单轴应力来实现纳米线能带结构由间接带隙到直接带隙的转变, 其中, 闪锌矿结构[111]方向GaSb纳米线仅在受到单轴拉伸应力时才发生能带由间接带隙到直接带隙的转变, 而纤锌矿结构[0001]方向GaSb纳米线无论受单轴拉伸还是压缩应力的作用均可实现能带由间接带隙到直接带隙的转变; [111]和[0001]方向GaSb纳米线的带隙和载流子有效质量与纳米线直径呈非线性关系, 并随纳米线直径的减小而增大; 同一方向和尺寸的GaSb纳米线, 其空穴有效质量要小于电子有效质量, 这表明小尺寸GaSb纳米线有利于空穴载流子输运.
      通信作者: 唐黎明, lmtang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11347022)和湖南省自然科学基金(批准号: 14JJ3117)资助的课题.
    [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 物理学报 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

  • [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 物理学报 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

  • [1] 段 鹤, 陈效双, 孙立忠, 周孝好, 陆 卫. 闪锌矿结构CdTe和ZnTe能带结构和有效质量的第一性原理计算. 物理学报, 2005, 54(11): 5293-5300. doi: 10.7498/aps.54.5293
    [2] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学. 物理学报, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [3] 吴慧婷, 王海龙, 姜黎明. 有效质量差异和电场对GaN/AlxGa1-xN球形量子点电子结构的影响. 物理学报, 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [4] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [5] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [6] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [7] 刘柱, 赵志飞, 郭浩民, 王玉琦. InAs/GaSb量子阱的能带结构及光吸收. 物理学报, 2012, 61(21): 217303. doi: 10.7498/aps.61.217303
    [8] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [9] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [10] 于 威, 张 立, 王保柱, 路万兵, 王利伟, 傅广生. 氢化纳米硅薄膜中氢的键合特征及其能带结构分析. 物理学报, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [11] 徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥. La, Nb共掺杂BiFeO3薄膜中的光致应变效应及应力调控. 物理学报, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [12] 鞠国兴, 蔡长英, 任中洲. 指数型变化有效质量的三维Schr?dinger方程的解析解. 物理学报, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [13] 额尔敦朝鲁, 肖景林, 李树深. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [14] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量. 物理学报, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [15] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [16] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [17] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [18] 王传道. GaAs/AlxGa1-xAs球形量子点中的电子结构. 物理学报, 2008, 57(2): 1091-1096. doi: 10.7498/aps.57.1091
    [19] 刘娜, 胡边, 魏鸿鹏, 刘红. 锯齿型石墨烯纳米窄带中量子霍尔体系的电场调控. 物理学报, 2018, 67(11): 117301. doi: 10.7498/aps.67.20180249
    [20] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
  • 引用本文:
    Citation:
计量
  • 文章访问数:  643
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-16
  • 修回日期:  2015-07-24
  • 刊出日期:  2015-11-20

量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究

  • 1. 湖南大学物理与微电子科学学院, 长沙 410082
  • 通信作者: 唐黎明, lmtang@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号: 11347022)和湖南省自然科学基金(批准号: 14JJ3117)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理计算方法, 研究了不同晶体结构和尺寸的GaSb纳米线能带结构特性和载流子的有效质量, 以及单轴应力对GaSb纳米线能带结构的调控. 研究结果表明: 闪锌矿结构[111]方向和纤锌矿结构[0001]方向的小尺寸GaSb纳米线均出现间接带隙的能带结构, 并可通过单轴应力来实现纳米线能带结构由间接带隙到直接带隙的转变, 其中, 闪锌矿结构[111]方向GaSb纳米线仅在受到单轴拉伸应力时才发生能带由间接带隙到直接带隙的转变, 而纤锌矿结构[0001]方向GaSb纳米线无论受单轴拉伸还是压缩应力的作用均可实现能带由间接带隙到直接带隙的转变; [111]和[0001]方向GaSb纳米线的带隙和载流子有效质量与纳米线直径呈非线性关系, 并随纳米线直径的减小而增大; 同一方向和尺寸的GaSb纳米线, 其空穴有效质量要小于电子有效质量, 这表明小尺寸GaSb纳米线有利于空穴载流子输运.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回