搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维超导的实验进展

张玺 刘超飞 王健

低维超导的实验进展

张玺, 刘超飞, 王健
PDF
导出引用
导出核心图
  • 超导自发现以来, 已成为凝聚态物理领域最重要的方向之一. 近年来, 低维材料制备技术的进步使得一维或二维的超导特性实验研究成为可能. 本文在简要介绍超导现象的基础上, 重点回顾了近些年二维超导薄膜和一维超导纳米线的制备和电输运研究, 以及在低维超导体中发现的相移、近邻效应、铁磁超导相互作用和高温超导等新奇的现象, 并对该领域的进一步发展做出了展望.
      通信作者: 王健, jianwangphysics@pku.edu.cn
    • 基金项目: 国家重大科学研究计划(批准号: 2013CB934600, 2012CB921300)、国家自然科学基金(批准号: 11222434, 11174007)和高等学校博士学科点专项科研基金资助的课题.
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1] 王天民, 徐刚毅, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [2] 石高明, 邹志强, 孙立民, 李玮聪, 刘晓勇. Si衬底上生长的MnSi薄膜和MnSi1.7 纳米线的STM和XPS分析 . 物理学报, 2012, 61(22): 227301. doi: 10.7498/aps.61.227301
    [3] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [4] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响. 物理学报, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [5] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [6] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [7] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [8] 孟凡斌, 李养贤, 陈贵锋, 胡海宁, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究. 物理学报, 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [9] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [10] 江学范, 方靖淮, 罗礼进, 仲崇贵, 蒋青. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [11] 许北雪, 吴锦雷, 刘惟敏, 邵庆益, 刘盛, 薛增泉, 吴全德, 杨海. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [12] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [13] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [14] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运. 物理学报, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [15] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [16] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响. 物理学报, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [17] 张飞鹏, 张忻, 路清梅, 张久兴. Ca3-x AgxCo4O9(x=0—0.05)氧化物的电输运性能. 物理学报, 2010, 59(6): 4211-4215. doi: 10.7498/aps.59.4211
    [18] 张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴. Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能. 物理学报, 2011, 60(8): 087205. doi: 10.7498/aps.60.087205
    [19] 周仕明, 鹿 牧, 袁淑娟. Ni纳米线阵列的铁磁共振研究. 物理学报, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [20] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究. 物理学报, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
  • 引用本文:
    Citation:
计量
  • 文章访问数:  872
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-14
  • 修回日期:  2015-10-21
  • 刊出日期:  2015-11-05

低维超导的实验进展

  • 1. 北京大学物理学院, 量子材料科学中心, 北京 100871;
  • 2. 量子物质科学协同创新中心, 北京 100871
  • 通信作者: 王健, jianwangphysics@pku.edu.cn
    基金项目: 

    国家重大科学研究计划(批准号: 2013CB934600, 2012CB921300)、国家自然科学基金(批准号: 11222434, 11174007)和高等学校博士学科点专项科研基金资助的课题.

摘要: 超导自发现以来, 已成为凝聚态物理领域最重要的方向之一. 近年来, 低维材料制备技术的进步使得一维或二维的超导特性实验研究成为可能. 本文在简要介绍超导现象的基础上, 重点回顾了近些年二维超导薄膜和一维超导纳米线的制备和电输运研究, 以及在低维超导体中发现的相移、近邻效应、铁磁超导相互作用和高温超导等新奇的现象, 并对该领域的进一步发展做出了展望.

English Abstract

参考文献 (103)

目录

    /

    返回文章
    返回