搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响

王光绪 陈鹏 刘军林 吴小明 莫春兰 全知觉 江风益

刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响

王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益
PDF
导出引用
  • 研究了等离子体刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化行为的影响. 实验结果表明, 表面AlN缓冲层的状态对N极性n-GaN的粗化行为影响很大, 采用等离子体刻蚀去除一部分表面AlN缓冲层即可以有效提高N极性n-GaN在KOH溶液中的粗化效果, AlN缓冲层未经任何刻蚀处理的样品粗化速度过慢, 被刻蚀完全去除AlN缓冲层的样品容易出现粗化过头的现象. 经X射线光电子能谱分析可知, 等离子体刻蚀能够提高样品表面AlN缓冲层Al 2p的电子结合能, 使得样品表面费米能级向导带底靠近, 原子含量测试表明样品表面产生了大量的N空位, N空位提供电子, 使得材料表面费米能级升高, 这降低了KOH溶液和样品表面之间的肖特基势垒, 从而有利于表面粗化的进行. 通过等离子体刻蚀掉表面部分AlN缓冲层, 改善了N极性n-GaN在KOH溶液中的粗化效果, 明显提升了对应发光二级管器件的出光功率.
      通信作者: 王光绪, guangxuwang@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61334001, 11364034, 21405076)、国家科技支撑计划(批准号: 2011BAE32B01)、国家高技术研究发展计划(批准号: 2011AA03A101)和江西省科技支撑计划 (批准号: 20151BBE50111)资助的课题.
    [1]

    Wang G, Tao X, Liu J, Jiang F 2015 Semicond. Sci. Tech. 30 15018

    [2]

    Luo Y, Wang L {2014 Physics 43 802 (in Chinese) [罗毅, 汪莱 2014 物理 43 802]

    [3]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [4]

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. Sin. Phys.: Mech. Astron. 45 7302 (in Chinese) [江风益, 刘军林, 王立 等 2015 中国科学: 物理学 力学 天文学 45 7302]

    [5]

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta Phys. Sin. 60 078503 (in Chinese) [王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 078503]

    [6]

    Mao Q H, Liu J L, Quan Z J, Wu X M, Zhang M, Jiang F Y 2015 Acta Phys. Sin. 64 107801 (in Chinese) [毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益 2015 物理学报 64 107801]

    [7]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [8]

    Gao Y, Fujii T, Sharma R, Fujito K, Denbaars S P, Nakamura S, Hu E L 2004 Jpn. J. Appl. Phys. 43 L637

    [9]

    Zhou Y H, Tang Y W, Rao J P, Jiang F Y {2009 Acta Opt. Sin. 29 252 (in Chinese) [周印华, 汤英文, 饶建平, 江风益 2009 光学学报 29 252]

    [10]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [11]

    Liu M G, Wang Y Q, Yang Y B, et al. 2015 Chin. Phys. B 24 038503

    [12]

    Gong Z N, Yun F, Ding W, et al. 2015 Acta Phys. Sin. 64 018501 (in Chinese) [弓志娜, 云峰, 丁文 等 2015 物理学报 64 018501]

    [13]

    Liu J, Zhang J, Mao Q, Wu X, Jiang F 2013 Crystengcomm 15 3372

    [14]

    Doan M H, Kim S, Lee J J, Lim H, Rotermund F, Kim K 2012 Aip. Adv. 2 22122

    [15]

    Kim D W, Lee H Y, Yoo M C, Yeom G Y 2005 Appl. Phys. Lett. 86 52108

    [16]

    Wang G X, Xiong C B, Liu J L, Jiang F Y 2011 Appl. Surf. Sci. 257 8675

    [17]

    Qiu H, Liu J L, Wang L, Jiang F Y 2011 Chin. J. Lumin. 32 603 (in Chinese) [邱虹, 刘军林, 王立, 江风益 2011 发光学报 32 603]

    [18]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [19]

    Zhuang D, Edgar J H 2005 Materials Science and Engineering: R: Reports 48 1

    [20]

    Gao Y D, Craven M D, Speck J S, Denbaars S P, Hu E L 2004 Appl. Phys. Lett. 84 3322

    [21]

    Chen E H, Mcinturff D T, Chin T P, Melloch M R, Woodall J M 1996 Appl. Phys. Lett. 68 1678

    [22]

    Steinhoff G, Hermann M, Schaff W J, Eastman L F, Stutzmann M, Eickhoff M 2003 Appl. Phys. Lett. 83 177

    [23]

    Jang H W, Jeon C M, Kim J K, Lee J 2001 Appl. Phys. Lett. 78 2015

  • [1]

    Wang G, Tao X, Liu J, Jiang F 2015 Semicond. Sci. Tech. 30 15018

    [2]

    Luo Y, Wang L {2014 Physics 43 802 (in Chinese) [罗毅, 汪莱 2014 物理 43 802]

    [3]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [4]

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. Sin. Phys.: Mech. Astron. 45 7302 (in Chinese) [江风益, 刘军林, 王立 等 2015 中国科学: 物理学 力学 天文学 45 7302]

    [5]

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta Phys. Sin. 60 078503 (in Chinese) [王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 078503]

    [6]

    Mao Q H, Liu J L, Quan Z J, Wu X M, Zhang M, Jiang F Y 2015 Acta Phys. Sin. 64 107801 (in Chinese) [毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益 2015 物理学报 64 107801]

    [7]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [8]

    Gao Y, Fujii T, Sharma R, Fujito K, Denbaars S P, Nakamura S, Hu E L 2004 Jpn. J. Appl. Phys. 43 L637

    [9]

    Zhou Y H, Tang Y W, Rao J P, Jiang F Y {2009 Acta Opt. Sin. 29 252 (in Chinese) [周印华, 汤英文, 饶建平, 江风益 2009 光学学报 29 252]

    [10]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [11]

    Liu M G, Wang Y Q, Yang Y B, et al. 2015 Chin. Phys. B 24 038503

    [12]

    Gong Z N, Yun F, Ding W, et al. 2015 Acta Phys. Sin. 64 018501 (in Chinese) [弓志娜, 云峰, 丁文 等 2015 物理学报 64 018501]

    [13]

    Liu J, Zhang J, Mao Q, Wu X, Jiang F 2013 Crystengcomm 15 3372

    [14]

    Doan M H, Kim S, Lee J J, Lim H, Rotermund F, Kim K 2012 Aip. Adv. 2 22122

    [15]

    Kim D W, Lee H Y, Yoo M C, Yeom G Y 2005 Appl. Phys. Lett. 86 52108

    [16]

    Wang G X, Xiong C B, Liu J L, Jiang F Y 2011 Appl. Surf. Sci. 257 8675

    [17]

    Qiu H, Liu J L, Wang L, Jiang F Y 2011 Chin. J. Lumin. 32 603 (in Chinese) [邱虹, 刘军林, 王立, 江风益 2011 发光学报 32 603]

    [18]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [19]

    Zhuang D, Edgar J H 2005 Materials Science and Engineering: R: Reports 48 1

    [20]

    Gao Y D, Craven M D, Speck J S, Denbaars S P, Hu E L 2004 Appl. Phys. Lett. 84 3322

    [21]

    Chen E H, Mcinturff D T, Chin T P, Melloch M R, Woodall J M 1996 Appl. Phys. Lett. 68 1678

    [22]

    Steinhoff G, Hermann M, Schaff W J, Eastman L F, Stutzmann M, Eickhoff M 2003 Appl. Phys. Lett. 83 177

    [23]

    Jang H W, Jeon C M, Kim J K, Lee J 2001 Appl. Phys. Lett. 78 2015

  • [1] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [2] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [3] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [4] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [5] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [6] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [7] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [8] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [9] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [10] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [11] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [12] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [13] 汪莱, 王磊, 任凡, 赵维, 王嘉星, 胡健楠, 张辰, 郝智彪, 罗毅. AlN/蓝宝石模板上生长的GaN研究. 物理学报, 2010, 59(11): 8021-8025. doi: 10.7498/aps.59.8021
    [14] 谢飞, 臧航. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, (): 002400. doi: 10.7498/aps.69.20200064
    [15] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [16] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [17] 杨吉军, 徐可为. 多晶薄膜表面粗化与生长方式转变. 物理学报, 2007, 56(2): 1110-1115. doi: 10.7498/aps.56.1110
    [18] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [19] 胡 瑾, 杜 磊, 周 江, 庄奕琪, 包军林. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1279
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-01-02
  • 刊出日期:  2016-04-05

刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响

  • 1. 南昌大学, 国家硅基LED工程技术研究中心, 南昌 330047
  • 通信作者: 王光绪, guangxuwang@ncu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61334001, 11364034, 21405076)、国家科技支撑计划(批准号: 2011BAE32B01)、国家高技术研究发展计划(批准号: 2011AA03A101)和江西省科技支撑计划 (批准号: 20151BBE50111)资助的课题.

摘要: 研究了等离子体刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化行为的影响. 实验结果表明, 表面AlN缓冲层的状态对N极性n-GaN的粗化行为影响很大, 采用等离子体刻蚀去除一部分表面AlN缓冲层即可以有效提高N极性n-GaN在KOH溶液中的粗化效果, AlN缓冲层未经任何刻蚀处理的样品粗化速度过慢, 被刻蚀完全去除AlN缓冲层的样品容易出现粗化过头的现象. 经X射线光电子能谱分析可知, 等离子体刻蚀能够提高样品表面AlN缓冲层Al 2p的电子结合能, 使得样品表面费米能级向导带底靠近, 原子含量测试表明样品表面产生了大量的N空位, N空位提供电子, 使得材料表面费米能级升高, 这降低了KOH溶液和样品表面之间的肖特基势垒, 从而有利于表面粗化的进行. 通过等离子体刻蚀掉表面部分AlN缓冲层, 改善了N极性n-GaN在KOH溶液中的粗化效果, 明显提升了对应发光二级管器件的出光功率.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回