搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象

乔晓粉 李晓莉 刘赫男 石薇 刘雪璐 吴江滨 谭平恒

悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象

乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒
PDF
导出引用
  • 研究了在二氧化硅/硅衬底上制备的悬浮石墨烯以及二硫化钼的反射光谱以及悬浮二硫化钼的光致发光光谱. 研究发现: 悬浮多层石墨烯的反射光谱表现出明显的振荡现象, 并且该振荡具有一定的周期性; 振荡周期的大小不依赖于悬浮多层石墨烯的层数, 而是随着衬底上沉孔深度(空气层厚度)的增加而减小. 利用多重光学干涉模型可以解释这种振荡现象以及振荡周期随沉孔深度改变的变化趋势. 该模型计算结果表明, 只有当沉孔深度达到微米量级时这种振荡现象才会显著出现; 并且可由振荡周期定量地确定出沉孔深度. 对于悬浮的二硫化钼样品, 其反射光谱和光致发光光谱也出现了类似的振荡现象. 这表明这种振荡现象是在各种衬底上悬浮二维材料反射光谱和光致发光光谱的一种普遍性结果, 也预示悬浮二维材料器件的电致发光光谱也会出现类似的振荡现象, 对悬浮二维晶体材料的物理性质和器件性能研究具有一定的参考价值.
      通信作者: 谭平恒, phtan@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11225421, 11434010, 11474277, 11504077)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 物理学报 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 物理学报 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1] 王建农, 罗向东, 姬长建, 王玉琦. 低温分子束外延生长的GaMnAs反射光谱的低能振荡现象. 物理学报, 2008, 57(8): 5277-5283. doi: 10.7498/aps.57.5277
    [2] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [3] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 物理学报, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [4] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析. 物理学报, 2011, 60(12): 120508. doi: 10.7498/aps.60.120508
    [5] 董艳锋, 李清山. 多孔铝镶嵌8-羟基喹啉铝荧光光谱研究. 物理学报, 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
    [6] 刘 蕾, 徐升华, 孙祉伟, 段 俐, 解京昌, 林 海. 二元体系胶体晶体性质的实验研究. 物理学报, 2008, 57(11): 7367-7373. doi: 10.7498/aps.57.7367
    [7] 彭同江, 万朴, 宋功保, 李博文. TiO_2/白云母纳米复合材料的色度学研究. 物理学报, 2002, 51(7): 1575-1580. doi: 10.7498/aps.51.1575
    [8] 郑卫民, 黄海北, 李素梅, 丛伟艳, 王爱芳, 李斌, 宋迎新. 掺杂在GaAs材料中Be受主能级之间的跃迁. 物理学报, 2019, 68(18): 187104. doi: 10.7498/aps.68.20190254
    [9] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [10] 曾果, 李兴源, 刘天琪, 赵睿. 同时抑制低频振荡和次同步振荡的多通道广域自适应阻尼控制. 物理学报, 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [11] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [12] 牛华蕾, 李晓娜, 胡冰, 董闯, 姜辛. 纳米β-FeSi2/a-Si多层膜室温光致发光分析. 物理学报, 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [13] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析. 物理学报, 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [14] 贾云波, 林碧霞, 傅竹西, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
    [15] 谢 芳, 张 林, 朱亚波, 张兆慧. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [16] 杨先清, 贾燕, 邓敏, 郭海萍, 唐刚, 刘甫. 垂直振动颗粒混合气体的振荡现象研究. 物理学报, 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [17] 肖 军, 张 曙, 杨 宇, 王 茺, 刘昭麟, 李天信, 陈平平, 崔昊杨, 陆 卫. 插入生长AlGaAs薄膜对InAs量子点探测器性能的影响. 物理学报, 2008, 57(2): 1155-1160. doi: 10.7498/aps.57.1155
    [18] 杨 宇, 王 茺, 刘昭麟, 陈平平, 崔昊杨, 夏长生, 陆 卫. 应力导致InAs/In0.15Ga0.85As量子点结构中In0.15Ga0.85As阱层的合金分解效应研究. 物理学报, 2007, 56(9): 5418-5423. doi: 10.7498/aps.56.5418
    [19] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究. 物理学报, 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [20] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
  • 引用本文:
    Citation:
计量
  • 文章访问数:  872
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-07-05

悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083
  • 通信作者: 谭平恒, phtan@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号: 11225421, 11434010, 11474277, 11504077)资助的课题.

摘要: 研究了在二氧化硅/硅衬底上制备的悬浮石墨烯以及二硫化钼的反射光谱以及悬浮二硫化钼的光致发光光谱. 研究发现: 悬浮多层石墨烯的反射光谱表现出明显的振荡现象, 并且该振荡具有一定的周期性; 振荡周期的大小不依赖于悬浮多层石墨烯的层数, 而是随着衬底上沉孔深度(空气层厚度)的增加而减小. 利用多重光学干涉模型可以解释这种振荡现象以及振荡周期随沉孔深度改变的变化趋势. 该模型计算结果表明, 只有当沉孔深度达到微米量级时这种振荡现象才会显著出现; 并且可由振荡周期定量地确定出沉孔深度. 对于悬浮的二硫化钼样品, 其反射光谱和光致发光光谱也出现了类似的振荡现象. 这表明这种振荡现象是在各种衬底上悬浮二维材料反射光谱和光致发光光谱的一种普遍性结果, 也预示悬浮二维材料器件的电致发光光谱也会出现类似的振荡现象, 对悬浮二维晶体材料的物理性质和器件性能研究具有一定的参考价值.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回