-
本文基于发射光谱法对磁空混合约束铜等离子体光谱特性进行了研究,分析了磁空混合约束条件下铜等离子体光谱强度演化过程以及等离子体光谱轴向和横向分布.实验结果表明,在磁空混合约束和空间约束条件下等离子体光谱均出现增强,对原子光谱Cu I 521.8 nm的最大增强因子分别为2和1.2,磁空混合作用等离子体离子光谱增强效果大于纯空间约束情形.在磁空混合约束作用下,光谱增强在小延时来源于磁场约束产生,而大延时为空间约束产生.结合光学阴影成像法,分析了Cu I 521.8 nm谱线强度的轴向和横向空间强度分布,由于空间约束作用的冲击波反射压缩,使等离子体羽横向膨胀方向存在约束,使等离子体内原子数密度最大空间位置前移,造成了磁空混合约束下Cu I 521.8 nm谱线强度的轴向最大空间位置远离铜表面.
[1] Hemmerlin M, Meilland R, Falk H, Wintjens P, Paulard L 2001 Spectrochim. Acta Part B At. Spectrosc. 56 661
[2] Michel A P, Lawrencesnyder M, Angel S M, Chave A D 2007 Appl. Opt. 46 2507
[3] Hanafi M, Omar M M, Gamal E D 2000 Radiat. Phys. Chem. 57 11
[4] Asimellis G, Hamilton S, Giannoudakos A, Kompitsas M 2005 Spectrochim. Acta Part B At. Spectrosc. 60 1132
[5] Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese)[杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全2013物理学报62 045202]
[6] Harilal S S, Tillack M S, O'Shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413
[7] Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D:Appl. Phys. 48 175205
[8] Li C, Gao X, Liu L, Lin J Q 2014 Acta Phys. Sin. 63 145203 (in Chinese)[李丞, 高勋, 刘潞, 林景全2014物理学报63 145203]
[9] Wang Z, Hou Z, Lui S L, Jiang D, Liu J, Li Z 2012 Opt. Express 20 1011
[10] Shen X K, Sun J, Ling H, Lu Y F 2007 Appl. Phys. Lett. 91 081501
[11] Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Express 19 14067
[12] Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105
[13] Pagano C, Hafeez S, Lunney J G 2009 J. Phys. D:Appl. Phys. 42 155205
[14] Li C, Zhang L Y, Qian S W 1979 Thermology (Beijing:Higher Education Press) p72(in Chinese)[李椿, 章立源, 钱尚武1979热学(北京:高等教育出版社)第72页]
[15] Qindeel R, Bidin N, Zia R, Daud Y M 2011 Optoelectron. Adv. Mat. Rapid Commun. 5 331
[16] Tillack M S, Harilal S S, Najmabadi F, O'Shay J 2005 IFSA 5 45
-
[1] Hemmerlin M, Meilland R, Falk H, Wintjens P, Paulard L 2001 Spectrochim. Acta Part B At. Spectrosc. 56 661
[2] Michel A P, Lawrencesnyder M, Angel S M, Chave A D 2007 Appl. Opt. 46 2507
[3] Hanafi M, Omar M M, Gamal E D 2000 Radiat. Phys. Chem. 57 11
[4] Asimellis G, Hamilton S, Giannoudakos A, Kompitsas M 2005 Spectrochim. Acta Part B At. Spectrosc. 60 1132
[5] Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese)[杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全2013物理学报62 045202]
[6] Harilal S S, Tillack M S, O'Shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413
[7] Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D:Appl. Phys. 48 175205
[8] Li C, Gao X, Liu L, Lin J Q 2014 Acta Phys. Sin. 63 145203 (in Chinese)[李丞, 高勋, 刘潞, 林景全2014物理学报63 145203]
[9] Wang Z, Hou Z, Lui S L, Jiang D, Liu J, Li Z 2012 Opt. Express 20 1011
[10] Shen X K, Sun J, Ling H, Lu Y F 2007 Appl. Phys. Lett. 91 081501
[11] Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Express 19 14067
[12] Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105
[13] Pagano C, Hafeez S, Lunney J G 2009 J. Phys. D:Appl. Phys. 42 155205
[14] Li C, Zhang L Y, Qian S W 1979 Thermology (Beijing:Higher Education Press) p72(in Chinese)[李椿, 章立源, 钱尚武1979热学(北京:高等教育出版社)第72页]
[15] Qindeel R, Bidin N, Zia R, Daud Y M 2011 Optoelectron. Adv. Mat. Rapid Commun. 5 331
[16] Tillack M S, Harilal S S, Najmabadi F, O'Shay J 2005 IFSA 5 45
引用本文: |
Citation: |
计量
- 文章访问数: 1121
- PDF下载量: 179
- 被引次数: 0