搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温生长砷化镓的超快光抽运-太赫兹探测光谱

樊正富 谭智勇 万文坚 邢晓 林贤 金钻明 曹俊诚 马国宏

低温生长砷化镓的超快光抽运-太赫兹探测光谱

樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏
PDF
导出引用
导出核心图
  • 本文采用光抽运-太赫兹探测技术系统研究了低温生长砷化镓(LT-GaAs)中光生载流子的超快动力学过程. 光激发LT-GaAs薄层电导率峰值随抽运光强增加而增加,最后达到饱和,其饱和功率为54 J/cm2. 当载流子浓度增大时,电子间的库仑相互作用将部分屏蔽缺陷对电子的俘获概率,从而导致LT-GaAs的快速载流子俘获时间随抽运光强增加而变长. 光激发薄层电导率的色散关系可以用Cole-Cole Drude模型很好地拟合,结果表明LT-GaAs内部载流子的散射时间随抽运光强增加和延迟时间(产生光和抽运光)变长而增加,主要来源于电子-电子散射以及电子-杂质缺陷散射共同贡献,其中电子-杂质缺陷散射的强度与光激发薄层载流子浓度密切相关,并可由散射时间分布函数 来描述. 通过对光激发载流子动力学、光激发薄层电导率以及迁移率变化的研究,我们提出适当增加缺陷浓度,可以进一步降低载流子迁移率和寿命,为研制和设计优良的THz发射器提供了实验依据.
      通信作者: 马国宏, ghma@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674213,11604202,61405233)、国家重大科学仪器设备开发专项(批准号:2011YQ150021)和上海市教委重点课题(批准号:14ZZ101)资助的课题.
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [2] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [3] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [4] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [5] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [6] 孙红三, 董占民, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [7] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨. 稀土正铁氧体中THz自旋波的相干调控与强耦合研究进展. 物理学报, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [8] 王广涛, 张敏平, 李珍, 郑立花. KCrF3中的轨道有序及其成因. 物理学报, 2012, 61(3): 037102. doi: 10.7498/aps.61.037102
    [9] 郑鑫, 江天, 程湘爱, 江厚满, 陆启生. 波段外激光辐照光导型InSb探测器的一种新现象. 物理学报, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [10] 董锦明, 束正煌. 轨道序对半掺杂锰氧化物光学性质的影响. 物理学报, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
  • 引用本文:
    Citation:
计量
  • 文章访问数:  306
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-01-19
  • 刊出日期:  2017-04-20

低温生长砷化镓的超快光抽运-太赫兹探测光谱

  • 1. 上海大学物理系, 上海 200444;
  • 2. 中国科学院上海微系统与信息技术研究所, 中国科学院太赫兹固态技术重点实验室, 上海 200050
  • 通信作者: 马国宏, ghma@staff.shu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11674213,11604202,61405233)、国家重大科学仪器设备开发专项(批准号:2011YQ150021)和上海市教委重点课题(批准号:14ZZ101)资助的课题.

摘要: 本文采用光抽运-太赫兹探测技术系统研究了低温生长砷化镓(LT-GaAs)中光生载流子的超快动力学过程. 光激发LT-GaAs薄层电导率峰值随抽运光强增加而增加,最后达到饱和,其饱和功率为54 J/cm2. 当载流子浓度增大时,电子间的库仑相互作用将部分屏蔽缺陷对电子的俘获概率,从而导致LT-GaAs的快速载流子俘获时间随抽运光强增加而变长. 光激发薄层电导率的色散关系可以用Cole-Cole Drude模型很好地拟合,结果表明LT-GaAs内部载流子的散射时间随抽运光强增加和延迟时间(产生光和抽运光)变长而增加,主要来源于电子-电子散射以及电子-杂质缺陷散射共同贡献,其中电子-杂质缺陷散射的强度与光激发薄层载流子浓度密切相关,并可由散射时间分布函数 来描述. 通过对光激发载流子动力学、光激发薄层电导率以及迁移率变化的研究,我们提出适当增加缺陷浓度,可以进一步降低载流子迁移率和寿命,为研制和设计优良的THz发射器提供了实验依据.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回