搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究

李智浩 曹亮 郭玉献

苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究

李智浩, 曹亮, 郭玉献
PDF
导出引用
导出核心图
  • 利用基于同步辐射的近边X射线吸收精细结构谱(NEXAFS)和共振光电子谱(RPES)研究了苝四甲酸二酐分子(PTCDA)薄膜的电子结构.碳K边NEXAFS谱中能量小于290 eV的四个峰对应于PTCDA分子不同化学环境碳原子1s电子到未占据分子轨道的共振跃迁.RPES谱中观察到共振光电子发射和共振俄歇电子发射导致的共振峰结构,以及二次谐波激发的碳1s信号.根据电子动能对入射光能量的依赖性分别对三类峰结构进行了归属.同时,发现PTCDA分子轨道共振光电子峰的强度具有光子能量依赖性.这种能量选择性共振增强效应是由于PTCDA分子轨道空间分布差异导致的.共振俄歇峰主要源于高结合能(4.1 eV)分子轨道能级电子参与的退激发过程.明确RPES实验谱图中各个峰结构的起源有助于准确利用基于RPES的芯能级空穴时钟谱技术定量估算有机分子/电极异质界面处电子从分子未占据轨道到电极导带的超快转移时间.
      通信作者: 曹亮, lcao@hmfl.ac.cn;guo_yuxian@163.com ; 郭玉献, lcao@hmfl.ac.cn;guo_yuxian@163.com
    • 基金项目: 国家自然科学基金(批准号:11574317,21503233)、安徽省自然科学基金(批准号:1608085MA07)和安徽高校自然科学研究项目(批准号:KJ2016A143)资助的课题.
    [1]

    Tang M L, Bao Z N 2011 Chem. Mater. 23 446

    [2]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [3]

    Torsi L, Magliulo M, Manoli K, Palazzo G 2013 Chem. Soc. Rev. 42 8612

    [4]

    Reineke S, Thomschke M, Lssem B, Leo K 2013 Rev. Mod. Phys. 85 1245

    [5]

    Hains A W, Liang Z Q, Woodhouse M A, Gregg B A 2010 Chem. Rev. 110 6689

    [6]

    Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H 2016 Nat. Energy 1 15027

    [7]

    Ostroverkhova O 2016 Chem. Rev. 116 13279

    [8]

    Hu Z H, Zhong Z M, Chen Y W, Sun C, Huang F, Peng J B, Wang J, Cao Y 2016 Adv. Funct. Mater. 26 129

    [9]

    Pan X, Ju H X, Feng X F, Fan Q T, Wang C H, Yang Y W, Zhu J F 2015 Acta Phys. Sin. 64 077304 (in Chinese) [潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发 2015 物理学报 64 077304]

    [10]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2014 J. Phys. Chem. C 118 4160

    [11]

    Brhwiler P A, Karis O, Mrtensson N 2002 Rev. Mod. Phys. 74 703

    [12]

    Zharnikov M 2015 J. Electron. Spectrosc. Relat. Phenom. 200 160

    [13]

    Cao L, Gao X Y, Wee A T S, Qi D C 2014 Adv. Mater. 26 7880

    [14]

    Forrest S R 2003 J. Phys. Condens. Matter 15 S2599

    [15]

    Tautz F S 2007 Prog. Surf. Sci. 82 47

    [16]

    Guo Y L, Yu G, Liu Y Q 2010 Adv. Mater. 22 4427

    [17]

    Ou G P, Song Z, Wu Y Y, Chen X Q, Zhang F J 2006 Chin. Phys. B 15 1296

    [18]

    Cao L, Zhang W H, Chen T X, Han Y Y, Xu G Q, Zhu J F, Yan W S, Xu Y, Wang F 2010 Acta Phys. Sin. 59 1681 (in Chinese) [曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰 2010 物理学报 59 1681]

    [19]

    Han Y Y, Cao L, Xu F Q, Chen T X, Zheng Z Y, Wan L, Liu L Y 2012 Acta Phys. Sin. 61 078103 (in Chinese) [韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云 2012 物理学报 61 078103]

    [20]

    Coville M, Thomas T D 1991 Phys. Rev. A 43 6053

    [21]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2011 J. Phys. Chem. C 115 24880

    [22]

    Cao L, Wang Y Z, Chen T X, Zhang W H, Yu X J, Ibrahim K, Wang J O, Qian H J, Xu F Q, Qi D C 2011 J. Chem. Phys. 135 174701

    [23]

    Taborski J, Vterlein P, Dietz H, Zimmermann U, Umbach E 1995 J. Electron. Spectrosc. Relat. Phenom. 75 129

    [24]

    Kikuma J, Tonner B P 1996 J. Electron. Spectrosc. Relat. Phenom. 82 41

    [25]

    Kera S, Setoyama H, Onoue M, Okudaira K K, Harada Y, Ueno N 2001 Phys. Rev. B 63 115204

    [26]

    Zahn D R T, Gavrila G N, Gorgoi M 2006 Chem. Phys. 325 99

  • [1]

    Tang M L, Bao Z N 2011 Chem. Mater. 23 446

    [2]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [3]

    Torsi L, Magliulo M, Manoli K, Palazzo G 2013 Chem. Soc. Rev. 42 8612

    [4]

    Reineke S, Thomschke M, Lssem B, Leo K 2013 Rev. Mod. Phys. 85 1245

    [5]

    Hains A W, Liang Z Q, Woodhouse M A, Gregg B A 2010 Chem. Rev. 110 6689

    [6]

    Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H 2016 Nat. Energy 1 15027

    [7]

    Ostroverkhova O 2016 Chem. Rev. 116 13279

    [8]

    Hu Z H, Zhong Z M, Chen Y W, Sun C, Huang F, Peng J B, Wang J, Cao Y 2016 Adv. Funct. Mater. 26 129

    [9]

    Pan X, Ju H X, Feng X F, Fan Q T, Wang C H, Yang Y W, Zhu J F 2015 Acta Phys. Sin. 64 077304 (in Chinese) [潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发 2015 物理学报 64 077304]

    [10]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2014 J. Phys. Chem. C 118 4160

    [11]

    Brhwiler P A, Karis O, Mrtensson N 2002 Rev. Mod. Phys. 74 703

    [12]

    Zharnikov M 2015 J. Electron. Spectrosc. Relat. Phenom. 200 160

    [13]

    Cao L, Gao X Y, Wee A T S, Qi D C 2014 Adv. Mater. 26 7880

    [14]

    Forrest S R 2003 J. Phys. Condens. Matter 15 S2599

    [15]

    Tautz F S 2007 Prog. Surf. Sci. 82 47

    [16]

    Guo Y L, Yu G, Liu Y Q 2010 Adv. Mater. 22 4427

    [17]

    Ou G P, Song Z, Wu Y Y, Chen X Q, Zhang F J 2006 Chin. Phys. B 15 1296

    [18]

    Cao L, Zhang W H, Chen T X, Han Y Y, Xu G Q, Zhu J F, Yan W S, Xu Y, Wang F 2010 Acta Phys. Sin. 59 1681 (in Chinese) [曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰 2010 物理学报 59 1681]

    [19]

    Han Y Y, Cao L, Xu F Q, Chen T X, Zheng Z Y, Wan L, Liu L Y 2012 Acta Phys. Sin. 61 078103 (in Chinese) [韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云 2012 物理学报 61 078103]

    [20]

    Coville M, Thomas T D 1991 Phys. Rev. A 43 6053

    [21]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2011 J. Phys. Chem. C 115 24880

    [22]

    Cao L, Wang Y Z, Chen T X, Zhang W H, Yu X J, Ibrahim K, Wang J O, Qian H J, Xu F Q, Qi D C 2011 J. Chem. Phys. 135 174701

    [23]

    Taborski J, Vterlein P, Dietz H, Zimmermann U, Umbach E 1995 J. Electron. Spectrosc. Relat. Phenom. 75 129

    [24]

    Kikuma J, Tonner B P 1996 J. Electron. Spectrosc. Relat. Phenom. 82 41

    [25]

    Kera S, Setoyama H, Onoue M, Okudaira K K, Harada Y, Ueno N 2001 Phys. Rev. B 63 115204

    [26]

    Zahn D R T, Gavrila G N, Gorgoi M 2006 Chem. Phys. 325 99

  • [1] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [2] 何少龙, 李宏年, 王晓雄, 李海洋, I. Kurash, 钱海杰, 苏 润, M. I. Abbas, 钟 俊, 洪才浩. Yb2.75C60同步辐射光电子能谱. 物理学报, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [3] 蔡春锋, 张兵坡, 黎瑞锋, 徐天宁, 毕岗, 吴惠桢, 张文华, 朱俊发. 利用同步辐射光电子能谱技术测量ZnO/PbTe异质结的能带带阶. 物理学报, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [4] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [5] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [6] 万力, 曹亮, 张文华, 韩玉岩, 陈铁锌, 刘凌云, 郭盼盼, 冯金勇, 徐法强. FePc与TiO2(110)及C60界面电子结构研究. 物理学报, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [7] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [8] 孟卫民, 汪润生, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺, 彭应全. 有机半导体的物理掺杂理论. 物理学报, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [9] 张玉滨, 解士杰, 任俊峰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [10] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [11] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [12] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
    [13] 李宏年. Rb掺杂C60单晶的相衍变和电子态. 物理学报, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [14] 王大文, 钟战天, 廖显伯, 范越, 李承芳, 牟善明. Au/a-Si:H界面X射线光电子能谱和俄歇电子能谱研究. 物理学报, 1991, 40(2): 275-280. doi: 10.7498/aps.40.275
    [15] 徐卓, 陈光德, 苑进社, 齐鸣, 李爱珍. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [16] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质. 物理学报, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [17] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [18] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [19] 赵特秀, 刘洪图, 王晓平, 施一生. Pd/W/Si(111)双层膜界面X射线光电子能谱与俄歇电子能谱研究. 物理学报, 1992, 41(11): 1849-1855. doi: 10.7498/aps.41.1849
    [20] 陈艳, 董国胜, 张明, 金晓峰, 范朝阳, 陆尔东, 潘海斌, 徐彭寿, 张新夷. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, 1995, 44(1): 145-151. doi: 10.7498/aps.44.145
  • 引用本文:
    Citation:
计量
  • 文章访问数:  677
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-08-23
  • 刊出日期:  2017-11-05

苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究

    基金项目: 

    国家自然科学基金(批准号:11574317,21503233)、安徽省自然科学基金(批准号:1608085MA07)和安徽高校自然科学研究项目(批准号:KJ2016A143)资助的课题.

摘要: 利用基于同步辐射的近边X射线吸收精细结构谱(NEXAFS)和共振光电子谱(RPES)研究了苝四甲酸二酐分子(PTCDA)薄膜的电子结构.碳K边NEXAFS谱中能量小于290 eV的四个峰对应于PTCDA分子不同化学环境碳原子1s电子到未占据分子轨道的共振跃迁.RPES谱中观察到共振光电子发射和共振俄歇电子发射导致的共振峰结构,以及二次谐波激发的碳1s信号.根据电子动能对入射光能量的依赖性分别对三类峰结构进行了归属.同时,发现PTCDA分子轨道共振光电子峰的强度具有光子能量依赖性.这种能量选择性共振增强效应是由于PTCDA分子轨道空间分布差异导致的.共振俄歇峰主要源于高结合能(4.1 eV)分子轨道能级电子参与的退激发过程.明确RPES实验谱图中各个峰结构的起源有助于准确利用基于RPES的芯能级空穴时钟谱技术定量估算有机分子/电极异质界面处电子从分子未占据轨道到电极导带的超快转移时间.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回