搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Majorana零模式的电导与低压振荡散粒噪声

颜志猛 王静 郭健宏

Majorana零模式的电导与低压振荡散粒噪声

颜志猛, 王静, 郭健宏
PDF
导出引用
导出核心图
  • Majorana零能量模式是自身的反粒子,在拓扑量子计算中有重要应用.本文研究量子点与拓扑超导纳米线混合结构,通过量子点的输运电荷检测Majorana零模式.利用量子主方程方法,发现有无Majorana零模式的电流与散粒噪声存在明显差别.零模式导致稳态电流差呈反对称,在零偏压处显示反常电导峰.电流差随零模式分裂能的增大而减小,随量子点与零模式耦合的增强而增大.另一方面,零模式导致低压散粒噪声相干振荡,零频噪声显著增强.分裂能导致相干振荡愈加明显且零频噪声减小,而量子点与零模式的耦合使零频噪声增强.当量子点与电极非对称耦合时,零模式使电子由反聚束到聚束输运,亚泊松噪声增强为超泊松噪声.稳态电流差结合低压振荡的散粒噪声能够揭示Majorana零模式是否存在.
      通信作者: 郭健宏, gjhaso@163.com
    • 基金项目: 北京市教委科研基金(批准号:KM201210028008)资助的课题.
    [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362

    [4]

    Nayak C, Wilczek F 1996 Nucl. Phys. B 479 529

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, DasSarma S 2008 Rev. Mod. Phys. 80 1083

    [6]

    Alicea J 2012 Rep. Prog. Phys. 75 076501

    [7]

    Sau J D, Lutchyn R M, Tewari S, DasSarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, DasSarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [11]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602

    [14]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, Marcus C M 2016 Nature 531 206

    [15]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557

    [16]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803

    [17]

    Zhang H, Gl , Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W A, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Prez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, Kouwenhoven L P 2017 Nat. Commun. 8 16025

    [18]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [19]

    Haim A, Berg E, von Oppen F, Oreg Y 2015 Phys. Rev. Lett. 114 166406

    [20]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [21]

    Bagrets D, Altland A 2012 Phys. Rev. Lett. 109 227005

    [22]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner M 1998 Nature 391 156

    [23]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 86 100503

    [24]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [25]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [26]

    Chen Q, Chen K Q, Zhao H K 2014 J. Phys.: Condens. Matter 26 315011

    [27]

    Li Z Z, Lam C H, You J Q 2015 Sci. Rep. 5 11416

    [28]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G, Zheng Y S 2014 Phys. Rev. B 89 245413

    [30]

    Jiang C, Lu G, Gong W J 2014 J. Appl. Phys. 116 103704

    [31]

    Gong W J, Zhao Y, Gao Z, Zhang S F 2015 Curr. Appl. Phys. 15 520

    [32]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [33]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [34]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

    [35]

    DasSarma S, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506

    [36]

    Thielmann A, Hettler M H, Knig J, Schn G 2003 Phys. Rev. B 68 115105

    [37]

    Aghassi J, Thielmann A, Hettler M H, Schn G 2006 Phys. Rev. B 73 195323

  • [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362

    [4]

    Nayak C, Wilczek F 1996 Nucl. Phys. B 479 529

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, DasSarma S 2008 Rev. Mod. Phys. 80 1083

    [6]

    Alicea J 2012 Rep. Prog. Phys. 75 076501

    [7]

    Sau J D, Lutchyn R M, Tewari S, DasSarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, DasSarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [11]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602

    [14]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, Marcus C M 2016 Nature 531 206

    [15]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557

    [16]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803

    [17]

    Zhang H, Gl , Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W A, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Prez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, Kouwenhoven L P 2017 Nat. Commun. 8 16025

    [18]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [19]

    Haim A, Berg E, von Oppen F, Oreg Y 2015 Phys. Rev. Lett. 114 166406

    [20]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [21]

    Bagrets D, Altland A 2012 Phys. Rev. Lett. 109 227005

    [22]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner M 1998 Nature 391 156

    [23]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 86 100503

    [24]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [25]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [26]

    Chen Q, Chen K Q, Zhao H K 2014 J. Phys.: Condens. Matter 26 315011

    [27]

    Li Z Z, Lam C H, You J Q 2015 Sci. Rep. 5 11416

    [28]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G, Zheng Y S 2014 Phys. Rev. B 89 245413

    [30]

    Jiang C, Lu G, Gong W J 2014 J. Appl. Phys. 116 103704

    [31]

    Gong W J, Zhao Y, Gao Z, Zhang S F 2015 Curr. Appl. Phys. 15 520

    [32]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [33]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [34]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

    [35]

    DasSarma S, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506

    [36]

    Thielmann A, Hettler M H, Knig J, Schn G 2003 Phys. Rev. B 68 115105

    [37]

    Aghassi J, Thielmann A, Hettler M H, Schn G 2006 Phys. Rev. B 73 195323

  • [1] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191964
    [2] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [3] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
  • 引用本文:
    Citation:
计量
  • 文章访问数:  449
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 修回日期:  2018-07-03
  • 刊出日期:  2018-09-20

Majorana零模式的电导与低压振荡散粒噪声

  • 1. 首都师范大学物理系, 北京 100048
  • 通信作者: 郭健宏, gjhaso@163.com
    基金项目: 

    北京市教委科研基金(批准号:KM201210028008)资助的课题.

摘要: Majorana零能量模式是自身的反粒子,在拓扑量子计算中有重要应用.本文研究量子点与拓扑超导纳米线混合结构,通过量子点的输运电荷检测Majorana零模式.利用量子主方程方法,发现有无Majorana零模式的电流与散粒噪声存在明显差别.零模式导致稳态电流差呈反对称,在零偏压处显示反常电导峰.电流差随零模式分裂能的增大而减小,随量子点与零模式耦合的增强而增大.另一方面,零模式导致低压散粒噪声相干振荡,零频噪声显著增强.分裂能导致相干振荡愈加明显且零频噪声减小,而量子点与零模式的耦合使零频噪声增强.当量子点与电极非对称耦合时,零模式使电子由反聚束到聚束输运,亚泊松噪声增强为超泊松噪声.稳态电流差结合低压振荡的散粒噪声能够揭示Majorana零模式是否存在.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回