搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒

张保花 郭福强 孙毅 王俊珺 李艳青 智丽丽

引用本文:
Citation:

溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒

张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽

Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles

Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li
PDF
导出引用
  • 采用两种不同的溶剂热路径合成出了不同形貌和尺寸的CdS纳米晶, 一种是以无水乙二胺(en) 为溶剂, CdCl22.5H2O和硫脲(H2NCSH2N) 为镉源和硫源, 在不同反应温度(160 ℃220 ℃ 下制备出了CdS纳米晶, 讨论温度对CdS纳米晶生长的影响; 另一种是以en为溶剂, 将在160 ℃下合成的产物在200 ℃下原位再结晶生长28 h, 分析原位生长时间对CdS纳米晶生长的影响. 通过X射线衍射(XRD)、 扫描电子电镜(SEM) 和透射电子电镜(TEM) 等表征产物的物相、 形貌和微结构, 分析可知: 两种路线合成的产物均为六方相CdS; 当温度为160 ℃时, 产物形貌为纳米颗粒状, 当温度高于160 ℃时, 产物为CdS纳米棒状; 同时, 在200 ℃下原位再结晶生长不同时间后发现产物形貌由纳米颗粒转变为纳米棒, 通过场发射扫描电镜(HRTEM) 分析可知: 纳米棒是由零维纳米颗粒自组装而成. 最后, 讨论了影响产物CdS纳米晶形貌转变的因素和纳米棒的生长机理.
    Two different solvothermal synthesis routines are used to fabricate CdS nanocrystals with different morphologies and sizes. Anhydrous ethylenediamine (en) is chosen as solvent, CdCl2. 2.5H2O and thiourea (H2NCSH2N) as the cadmium source and sulfur source respectively in the first method. CdS Nanocrystals are prepared at different reaction temperatures (160 ℃-220 ℃) and the influence of the reaction temperature on the growth of CdS nanocrystals is discussed. In the other routine, anhydrous ethylenediamine (en) is also chosen as solvent. The synthesized products at 160 ℃ are recrystallized under 200 ℃ for 2-8 h. The influence of the recrystallisation time on the growth of CdS Nanocrystal is discussed. The in-situ analysis of effect of the growth time on the growth of CdS nanocrystals is performed. The phase, morphology and crystallographic structure of CdS nanocrystals are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. The results show that both products exhibit pure hexagonal structures, the morphology of the product is nanoparticles at the temperatures below 160 ℃, when the temperature is rasied to higher than 160 ℃, the products are CdS nanorods. Meanwhile, the morphologies of the recrystallisation products under 200 ℃ for different times are found to convert from nanoparticles into nanorods gradually. The nanorods are composed of zero-dimensional particles through self-assembly process which could be demonstrated by field emission scanning electron microscopy (HRTEM) analysis. Finally, the factors that influence the morphology changes of CdS nanocrystals and the mechanism of the growth of nanorods are discussed.
    • 基金项目: 新疆维吾尔自治区高校科研计划(批准号: XJEDU2010S46) 资助的课题.
    • Funds: Project supported by the Foundation of the Scientific Research Program of the Higher Education Institution of XinJiang Uyghur Aptonom Rayoni (Grant No. XJEDU2010S46).
    [1]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [2]

    Venkatram N, Rao D N 2005 Opt. Express 13 867

    [3]

    He J, Ji W, Ma G H, Tang S H, Elim H I, Sun W X, Zhang Z H, Chin W S 2004 J. Appl. Phys. 95 6381

    [4]

    Ullrich B, Schroeder R, Graupner W, Sakai S 2001 Opt. Express 9 116

    [5]

    Jie G F, Liu B, Pan H C, Zhu J J, Chen H Y 2007 Anal. Chem. 79 5574

    [6]

    Wang J, Liu G D, Jan M R, Zhu Q Y 2003 Electrochem. Commun. 5 1000

    [7]

    Zhang J, Song S P, Zhang L Y, Wang L H, Wu H P, Pan D, Fan C H 2006 J. Am. Chem. Soc. 128 8575

    [8]

    Zhao J L, Bardecker J A, Munro A M, Liu M S, Niu Y H, Ding I K, Luo J D, Chen B Q, Jen A K Y, Ginger D S 2006 Nano Lett. 6 463

    [9]

    Schlamp M C, Peng X G, Alivisatos A P 1997 J. Appl. Phys. 82 5837

    [10]

    Wang F F, Wang C, Cheng K, Zou B S 2008 Chin. Phys. B 17 3103

    [11]

    Jing D W, Guo L J 2006 J. Phys. Chem. B 110 11139

    [12]

    Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C 2009 J. Catal. 266 165

    [13]

    Pan H, Feng Y P 2008 Phys. Rev. B 77 125211

    [14]

    Saunders A E, Popov I, Banin U 2006 J. Phys. Chem. B 110 25421

    [15]

    Khiew P S, Radiman S, Huang N M, Ahmad M S 2003 J. Cryst. Growth 254 235

    [16]

    Jang J S, A Joshi U, Lee J S 2007 J. Phys. Chem. C 111 13280

    [17]

    Naira P S, Radhakrishnana T, Revaprasadua N, A. Kolawolea G, O'Brienb P 2003 Polyhedron. 22 3129

    [18]

    Li W, Xu L, Sun P, Zhao W M, Huang X F, Xu J, Chen K J 2007 Acta Phys. Sin. 56 4242 (in Chinese) [李卫, 徐岭, 孙萍, 赵伟明, 黄信凡, 徐骏, 陈坤基 2007 物理学报 56 4242]

    [19]

    Fu X L, Peng Z J, Tang W H, Guo X 2009 Chin. Phys. B 18 4460

    [20]

    Yao J X, Zhao G L, Wang D, Han G R 2005 Mater. Lett. 59 3652

    [21]

    Wei F, Li G C, Zhang Z K 2005 J. Nanopart. Res. 7 685

    [22]

    Chen M, Xie Y, Chen H Y, Qiao Z P, Zhu Y J, Qian Y T 2000 J. Colloid Interface Sci. 229 217

    [23]

    Deng Z X, Li L B, Li Y D 2003 Inor. Chem. 42 2331

    [24]

    Li B, Xie Y, Huang J, Liu Y, Qian Y T 1999 Ultrason. Sonochem. 6 217

    [25]

    Li Y D, Liao H W, Ding Y, Qian Y T, Yang L, Zhou G 1998 Chem. Mater. 10 2301

    [26]

    Yao L Z 1995 The Fundamentals of Crystal Growth (Hefei: China Science and Technology University Press) (in Chinese) [姚连增1995《晶体生长基础》(合肥: 中国科学技术大学出版社)] 第27页

  • [1]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [2]

    Venkatram N, Rao D N 2005 Opt. Express 13 867

    [3]

    He J, Ji W, Ma G H, Tang S H, Elim H I, Sun W X, Zhang Z H, Chin W S 2004 J. Appl. Phys. 95 6381

    [4]

    Ullrich B, Schroeder R, Graupner W, Sakai S 2001 Opt. Express 9 116

    [5]

    Jie G F, Liu B, Pan H C, Zhu J J, Chen H Y 2007 Anal. Chem. 79 5574

    [6]

    Wang J, Liu G D, Jan M R, Zhu Q Y 2003 Electrochem. Commun. 5 1000

    [7]

    Zhang J, Song S P, Zhang L Y, Wang L H, Wu H P, Pan D, Fan C H 2006 J. Am. Chem. Soc. 128 8575

    [8]

    Zhao J L, Bardecker J A, Munro A M, Liu M S, Niu Y H, Ding I K, Luo J D, Chen B Q, Jen A K Y, Ginger D S 2006 Nano Lett. 6 463

    [9]

    Schlamp M C, Peng X G, Alivisatos A P 1997 J. Appl. Phys. 82 5837

    [10]

    Wang F F, Wang C, Cheng K, Zou B S 2008 Chin. Phys. B 17 3103

    [11]

    Jing D W, Guo L J 2006 J. Phys. Chem. B 110 11139

    [12]

    Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C 2009 J. Catal. 266 165

    [13]

    Pan H, Feng Y P 2008 Phys. Rev. B 77 125211

    [14]

    Saunders A E, Popov I, Banin U 2006 J. Phys. Chem. B 110 25421

    [15]

    Khiew P S, Radiman S, Huang N M, Ahmad M S 2003 J. Cryst. Growth 254 235

    [16]

    Jang J S, A Joshi U, Lee J S 2007 J. Phys. Chem. C 111 13280

    [17]

    Naira P S, Radhakrishnana T, Revaprasadua N, A. Kolawolea G, O'Brienb P 2003 Polyhedron. 22 3129

    [18]

    Li W, Xu L, Sun P, Zhao W M, Huang X F, Xu J, Chen K J 2007 Acta Phys. Sin. 56 4242 (in Chinese) [李卫, 徐岭, 孙萍, 赵伟明, 黄信凡, 徐骏, 陈坤基 2007 物理学报 56 4242]

    [19]

    Fu X L, Peng Z J, Tang W H, Guo X 2009 Chin. Phys. B 18 4460

    [20]

    Yao J X, Zhao G L, Wang D, Han G R 2005 Mater. Lett. 59 3652

    [21]

    Wei F, Li G C, Zhang Z K 2005 J. Nanopart. Res. 7 685

    [22]

    Chen M, Xie Y, Chen H Y, Qiao Z P, Zhu Y J, Qian Y T 2000 J. Colloid Interface Sci. 229 217

    [23]

    Deng Z X, Li L B, Li Y D 2003 Inor. Chem. 42 2331

    [24]

    Li B, Xie Y, Huang J, Liu Y, Qian Y T 1999 Ultrason. Sonochem. 6 217

    [25]

    Li Y D, Liao H W, Ding Y, Qian Y T, Yang L, Zhou G 1998 Chem. Mater. 10 2301

    [26]

    Yao L Z 1995 The Fundamentals of Crystal Growth (Hefei: China Science and Technology University Press) (in Chinese) [姚连增1995《晶体生长基础》(合肥: 中国科学技术大学出版社)] 第27页

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [5] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [6] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [7] 郭巍巍, 任焕, 齐成军, 王小蒙, 李小武. 一个单滑移取向铜单晶体疲劳位错结构的热稳定性研究. 物理学报, 2012, 61(15): 156201. doi: 10.7498/aps.61.156201
    [8] 张宇, 葛昌纯, 沈卫平, 邱成杰. 喷射成型FGH4095静态再结晶组织特征. 物理学报, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [9] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [10] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [11] 刘青, 王鸣, 郭文华, 闫海涛, 喻平. 一种胶体光子晶体修饰的光纤. 物理学报, 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [12] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [13] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [14] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [15] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [16] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [19] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [20] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
计量
  • 文章访问数:  6885
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-13
  • 修回日期:  2011-12-11
  • 刊出日期:  2012-07-05

/

返回文章
返回