搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

李蕊 左小伟 王恩刚

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

李蕊, 左小伟, 王恩刚
PDF
导出引用
导出核心图
  • 采用差示扫描量热法、X射线衍射及透射电子显微镜研究了固溶和固溶-冷轧Ag-7wt.% Cu合金在时效过程中富Cu相的析出动力学和形貌特征,同时结合电阻率和显微硬度的测量,定量对比了固溶和固溶-冷轧Ag-7wt.% Cu合金时效过程中富Cu相对电阻率和硬度的影响及其机理.研究结果表明:固溶样品中富Cu相反应温度为300 C350 C,析出激活能为(1111.6)kJ/mol;而固溶-冷轧样品中由于形变能的存在,富Cu相温度降低为290 C330 C,析出激活能升高为(12812)kJ/mol.XRD结果证实富Cu相的析出过程与时效温度有关.固溶和固溶-冷轧合金在450 C时效后均能观察到球状的富Cu相,富Cu相的析出和溶解过程对电阻率和显微硬度有显著影响.当时效温度低于450 C时,随时效温度的提高,固溶-时效样品的电阻率降低,显微硬度增加;而固溶-冷轧-时效样品的电阻率和显微硬度均逐渐降低.显微硬度除了受富Cu相的影响外,还受到位错和形变孪晶的影响.当时效温度高于450 C时,两种样品的电阻率增大,而显微硬度降低.
      通信作者: 王恩刚, egwang@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51474066,51004038)和高等学校学科创新引智计划(批准号:B07015)资助的课题.
    [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1394
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 修回日期:  2016-10-16
  • 刊出日期:  2017-01-20

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819;
  • 2. 东北大学材料科学与工程学院, 沈阳 110819;
  • 3. 东北大学冶金学院, 沈阳 110819
  • 通信作者: 王恩刚, egwang@mail.neu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51474066,51004038)和高等学校学科创新引智计划(批准号:B07015)资助的课题.

摘要: 采用差示扫描量热法、X射线衍射及透射电子显微镜研究了固溶和固溶-冷轧Ag-7wt.% Cu合金在时效过程中富Cu相的析出动力学和形貌特征,同时结合电阻率和显微硬度的测量,定量对比了固溶和固溶-冷轧Ag-7wt.% Cu合金时效过程中富Cu相对电阻率和硬度的影响及其机理.研究结果表明:固溶样品中富Cu相反应温度为300 C350 C,析出激活能为(1111.6)kJ/mol;而固溶-冷轧样品中由于形变能的存在,富Cu相温度降低为290 C330 C,析出激活能升高为(12812)kJ/mol.XRD结果证实富Cu相的析出过程与时效温度有关.固溶和固溶-冷轧合金在450 C时效后均能观察到球状的富Cu相,富Cu相的析出和溶解过程对电阻率和显微硬度有显著影响.当时效温度低于450 C时,随时效温度的提高,固溶-时效样品的电阻率降低,显微硬度增加;而固溶-冷轧-时效样品的电阻率和显微硬度均逐渐降低.显微硬度除了受富Cu相的影响外,还受到位错和形变孪晶的影响.当时效温度高于450 C时,两种样品的电阻率增大,而显微硬度降低.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回