搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变温霍尔效应方法的一类n-GaN位错密度的测量

何菊生 张萌 潘华清 邹继军 齐维靖 李平

引用本文:
Citation:

基于变温霍尔效应方法的一类n-GaN位错密度的测量

何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平

Determination of dislocation density of a class of n-GaN based on the variable temperature Hall-effect method

He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Zou Ji-Jun, Qi Wei-Jing, Li Ping
PDF
导出引用
  • 结合莫特相变及类氢模型,采用浅施主能量弛豫方法,计算了一类常见n-GaN光电子材料的载流子迁移率,给出了精确测定其刃、螺位错密度的电学方法.研究表明,对于莫特相变材料(载流子浓度超过1018cm-3),以位错密度Ndis、刃螺位错密度比、刃位错周围浅施主电离能D1、螺位错周围浅施主电离能D2为拟合参数的载流子迁移率模型与实验曲线高度符合,拟合所得刃、螺位错密度与X射线衍射法或化学腐蚀方法的测试结果也基本一致.实验结果表明,莫特相变材料虽然载流子浓度高、霍尔迁移率低,但其位错密度却并不一定高过载流子浓度低、霍尔迁移率高的材料,应变也无明显差异,因此,莫特相变与刃、螺位错密度及两类位置最浅的施主均无关系,可能是位置较深的施主或其他缺陷所致,需要比一般杂质带高得多的载流子浓度.该方法适合霍尔迁移率在0 K附近不为零,霍尔迁移率曲线峰位300 K左右及以上的各种生长工艺、各种厚度、各种质量层次的薄膜材料,能够对迁移率曲线高度拟合,迅速给出莫特相变材料的相关精确参数.
    An analytical model for electron mobility in a class of wurtzite n-GaN, whose carrier concentration is over 1018 cm-3 (Mott's critical limit), is developed. With the dislocation density and two donor levels serving as the important parameters, the proposed model can accurately predict the electron mobility as a function of temperature. The edge and screw dislocation densities in two samples, which are respectively grown on sapphire (001) by metal organic chemical vapor deposition and hydride vapor phase epitaxy, are determined by using this model which is discussed in detail. It is shown that the data-fitting of H-T characteristic curve is a highly suitable technique for accurately determining the edge and screw dislocation densities in n-GaN films. Quantitative analyses of donor concentration and donor activation energy indicate that the impurity band occurs when the carrier concentration is under 1017 cm-3, much lower than the critical carrier concentration of Mott transition (1018 cm-3). Such a behavior can also be confirmed by the results from solving the Boltzmann transport equation by using the Rode iterative method. Another anomaly is that the dislocation density in Mott transition material perhaps is lower than that of material with carrier concentration under 1018 cm-3. This fact indicates that the cause of Mott transition should not be the shallow donor impurities around dislocation lines, but perhaps the deeper donor impurities or other defects. In the theoretical model calculation, two transition characteristics together with the donor distribution and its energy equilibrium are taken into account. Based both on the Mott transition and the H-like electron state model, the relaxation energies for the shallow-donor defects along the screw and edge dislocation lines are calculated by using an electrical ensemble average method. Besides, an assumption that should be made is that there are 6 shallow-donor defect lines around one dislocation line. The research results show that the Hall mobility should be taken as the live degree of the ionizing energy for the shallow-donor defects along the dislocation line. The experimental results indicate that our calculation function can be best fit by the experimental curve, with the values of dislocation density being between our model and others determined by X-ray diffraction or by chemical etching method, which are all in good agreement with each other. The method reported can be applied to the wurtzite n-GaN films grown by various preparation technologies under any condition, with the peak-mobility temperature about or over 300 K, whose Hall mobility near 0 K perhaps is over 10 cm2/(Vs) and even 100 cm2/(Vs).
      通信作者: 何菊生, Hejusheng_2004@sohu.com
    • 基金项目: 江西省自然科学基金(批准号:20151BAB207066)和南昌大学科学技术学院自然科学基金(批准号:2012-ZR-06)资助的课题.
      Corresponding author: He Ju-Sheng, Hejusheng_2004@sohu.com
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207066) and the Natural Science Foundation of College of Science and Technology of Nanchang University, China (Grant No. 2012-ZR-06).
    [1]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y D 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [2]

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801 (in Chinese) [齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 物理学报 65 077801]

    [3]

    He J S, Zhang M, Pan H Q, Qi W J, Li P 2016 Acta Phys. Sin. 65 167201 (in Chinese) [何菊生, 张萌, 潘华清, 齐维靖, 李平 2016 物理学报 65 167201]

    [4]

    Mavroidis C, Harris J J, Jackman R B, Harrison I, Ansell B J, Bougrioua Z, Moerman I 2002 J. Appl. Phys. 91 9835

    [5]

    James A F, Yeo Y K, Ryu M Y, Hengehold R L 2005 J. Electron. Mater. 34 1157

    [6]

    Osinnykh I V, Zhuravlev K S, Malin T V, Ber B Y, Kazantsev D Y 2014 Semiconductors 48 1134

    [7]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [8]

    Zhang Z, Zhang R, Xie Z L, Liu B, Xiu X Q, Jiang R L, Han P, Gu S L, Shi Y, Zheng Y D 2008 Sci. China Ser. G:-Phys. Mech. Astron. 51 1046

    [9]

    Ding Z B, Yao S D, Wang K, Cheng K 2006 Acta Phys. Sin. 55 2977 (in Chinese) [丁志博, 姚淑德, 王坤, 程凯 2006 物理学报 55 2977]

    [10]

    Look D C, Sizelove J R 2001 Appl. Phys. Lett. 79 1133

    [11]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaas S P 1997 Solid State Commun. 102 297

  • [1]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y D 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [2]

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801 (in Chinese) [齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 物理学报 65 077801]

    [3]

    He J S, Zhang M, Pan H Q, Qi W J, Li P 2016 Acta Phys. Sin. 65 167201 (in Chinese) [何菊生, 张萌, 潘华清, 齐维靖, 李平 2016 物理学报 65 167201]

    [4]

    Mavroidis C, Harris J J, Jackman R B, Harrison I, Ansell B J, Bougrioua Z, Moerman I 2002 J. Appl. Phys. 91 9835

    [5]

    James A F, Yeo Y K, Ryu M Y, Hengehold R L 2005 J. Electron. Mater. 34 1157

    [6]

    Osinnykh I V, Zhuravlev K S, Malin T V, Ber B Y, Kazantsev D Y 2014 Semiconductors 48 1134

    [7]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [8]

    Zhang Z, Zhang R, Xie Z L, Liu B, Xiu X Q, Jiang R L, Han P, Gu S L, Shi Y, Zheng Y D 2008 Sci. China Ser. G:-Phys. Mech. Astron. 51 1046

    [9]

    Ding Z B, Yao S D, Wang K, Cheng K 2006 Acta Phys. Sin. 55 2977 (in Chinese) [丁志博, 姚淑德, 王坤, 程凯 2006 物理学报 55 2977]

    [10]

    Look D C, Sizelove J R 2001 Appl. Phys. Lett. 79 1133

    [11]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaas S P 1997 Solid State Commun. 102 297

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 封东来. 莫特物理——量子材料的主旋律之一. 物理学报, 2023, 72(23): 237101. doi: 10.7498/aps.72.20231508
    [4] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [5] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [6] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料. 物理学报, 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [9] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [10] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法. 物理学报, 2016, 65(16): 167201. doi: 10.7498/aps.65.167201
    [11] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [12] 侯清玉, 乌云, 赵春旺. Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算. 物理学报, 2013, 62(23): 237102. doi: 10.7498/aps.62.237102
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [15] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [16] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [17] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究. 物理学报, 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [18] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算. 物理学报, 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
计量
  • 文章访问数:  5339
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-23
  • 修回日期:  2016-12-08
  • 刊出日期:  2017-03-05

/

返回文章
返回