搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sb,S共掺杂SnO2电子结构的第一性原理分析

丁超 李卫 刘菊燕 王琳琳 蔡云 潘沛锋

Sb,S共掺杂SnO2电子结构的第一性原理分析

丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋
PDF
导出引用
  • 基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.
      通信作者: 李卫, liw@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504177)、中国博士后科学基金特别资助(批准号:2018T110480)、江苏省自然科学基金(批准号:BK20171442)和东南大学毫米波国家重点实验室开放基金(批准号:K201723)资助的课题.
    [1]

    Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713

    [2]

    Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194

    [3]

    Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244

    [4]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47

    [5]

    Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392

    [6]

    Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667

    [7]

    Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287

    [8]

    Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813

    [9]

    Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965

    [10]

    Minami T 2005 Semicond. Sci. Tech. 20 35

    [11]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411

    [13]

    Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158

    [14]

    Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525

    [15]

    Snaith H J, Ducati C 2010 Nano Lett. 10 1259

    [16]

    Jeong J H 2014 Kor. J. Vis. Sci. 16 573

    [17]

    Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143

    [18]

    Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19

    [19]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010

    [21]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]

    [22]

    Wan Q, Wang T H 2005 Chem. Commun. 30 3841

    [23]

    Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107

    [24]

    Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503

    [25]

    Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529

    [26]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [27]

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]

    [28]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]

  • [1]

    Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713

    [2]

    Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194

    [3]

    Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244

    [4]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47

    [5]

    Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392

    [6]

    Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667

    [7]

    Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287

    [8]

    Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813

    [9]

    Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965

    [10]

    Minami T 2005 Semicond. Sci. Tech. 20 35

    [11]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411

    [13]

    Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158

    [14]

    Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525

    [15]

    Snaith H J, Ducati C 2010 Nano Lett. 10 1259

    [16]

    Jeong J H 2014 Kor. J. Vis. Sci. 16 573

    [17]

    Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143

    [18]

    Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19

    [19]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010

    [21]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]

    [22]

    Wan Q, Wang T H 2005 Chem. Commun. 30 3841

    [23]

    Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107

    [24]

    Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503

    [25]

    Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529

    [26]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [27]

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]

    [28]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2116
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-11-05

Sb,S共掺杂SnO2电子结构的第一性原理分析

  • 1. 南京邮电大学电子与光学工程学院、微电子学院, 南京 210023;
  • 2. 东南大学毫米波国家重点实验室, 南京 210096;
  • 3. 南京大学物理学院, 南京 210093
  • 通信作者: 李卫, liw@njupt.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11504177)、中国博士后科学基金特别资助(批准号:2018T110480)、江苏省自然科学基金(批准号:BK20171442)和东南大学毫米波国家重点实验室开放基金(批准号:K201723)资助的课题.

摘要: 基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回