搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非扩散洛伦兹系统的周期轨道

董成伟

非扩散洛伦兹系统的周期轨道

董成伟
PDF
导出引用
  • 混沌系统的奇怪吸引子是由无数条周期轨道稠密覆盖构成的,周期轨道是非线性动力系统中除不动点之外最简单的不变集,它不仅能够体现出混沌运动的所有特征,而且和系统振荡的产生与变化密切相关,因此分析复杂系统的动力学行为时获取周期轨道具有重要意义.本文系统地研究了非扩散洛伦兹系统一定拓扑长度以内的周期轨道,提出一种基于轨道的拓扑结构来建立一维符号动力学的新方法,通过变分法数值计算轨道显得很稳定.寻找轨道初始化时,两条轨道片段能够被用作基本的组成单元,基于整条轨道的结构进行拓扑分类的方式显得很有效.此外,讨论了周期轨道随着参数变化时的形变情况,为研究轨道的周期演化规律提供了新途径.本研究可为在其他类似的混沌体系中找到并且系统分类周期轨道提供一种可借鉴的方法.
    • 基金项目: 国家自然科学基金(批准号:11647085,11647086,11747106)、山西省应用基础研究计划(批准号:201701D121011)和中北大学自然科学研究基金(批准号:XJJ2016036)资助的课题.
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1777
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-10-22
  • 刊出日期:  2019-12-20

非扩散洛伦兹系统的周期轨道

  • 中北大学理学院 物理学科部, 太原 030051
    基金项目: 

    国家自然科学基金(批准号:11647085,11647086,11747106)、山西省应用基础研究计划(批准号:201701D121011)和中北大学自然科学研究基金(批准号:XJJ2016036)资助的课题.

摘要: 混沌系统的奇怪吸引子是由无数条周期轨道稠密覆盖构成的,周期轨道是非线性动力系统中除不动点之外最简单的不变集,它不仅能够体现出混沌运动的所有特征,而且和系统振荡的产生与变化密切相关,因此分析复杂系统的动力学行为时获取周期轨道具有重要意义.本文系统地研究了非扩散洛伦兹系统一定拓扑长度以内的周期轨道,提出一种基于轨道的拓扑结构来建立一维符号动力学的新方法,通过变分法数值计算轨道显得很稳定.寻找轨道初始化时,两条轨道片段能够被用作基本的组成单元,基于整条轨道的结构进行拓扑分类的方式显得很有效.此外,讨论了周期轨道随着参数变化时的形变情况,为研究轨道的周期演化规律提供了新途径.本研究可为在其他类似的混沌体系中找到并且系统分类周期轨道提供一种可借鉴的方法.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回