搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BixBa1-xTiO3电子及能带结构的第一性原理研究

房玉真 孔祥晋 王东亭 崔守鑫 刘军海

引用本文:
Citation:

BixBa1-xTiO3电子及能带结构的第一性原理研究

房玉真, 孔祥晋, 王东亭, 崔守鑫, 刘军海

First principle study of electron and band structure of BixBa1-xTiO3

Fang Yu-Zhen, Kong Xiang-Jin, Wang Dong-Ting, Cui Shou-Xin, Liu Jun-Hai
PDF
导出引用
  • 采用基于第一性原理的赝势平面波方法,研究了ABO3钙钛矿复合氧化物BaTiO3中A位离子被Bi原子取代后对其构型、电子及能带结构的影响.计算结果表明,Bi取代Ba之后会降低BaTiO3的对称性,空间点群随着取代量的变化而变化,结合能逐渐降低.通过能带结构的计算发现BixBa1-xTiO3为直接带隙型半导体.Bi的取代可调节BixBa1-xTiO3的禁带宽度,从x=0.125到x=0.625时,Bi的取代量越大,其带隙越宽,吸收光谱蓝移.x0.625时,禁带宽度又逐渐减小,吸收光谱红移.由态密度图可看出,其价带顶主要是O-2p与Bi-6s态杂化而成,导带底主要由Ti-3d态构成.
    Some perovskite structured catalysts have narrower forbidden band widths than pure TiO2, and they have been widely used in a number of photo-catalytic reactions. The ions in the perovskite may be replaced by other ions while maintaining the structure unchanged for its tailorable character. BiTiO can form into the typical perovskite composite oxide BiTiO3 under specific preparation conditions. The regulation of the energy gap of the perovskite BaTiO3 can be realized by substituting Bi for Ba to form the BixBa1-xTiO3 perovskite structure to improve its photo-catalytic activity. But the improvement mechanism and the electron and band structures of BixBa1-xTiO3 are still not very clear. In this study, we exhibit a detailed theoretical investigation to predict the electronic structure, band gap and optical absorption properties of BixBa1-xTiO3 structures based on the first-principles plane-wave ultrasoft pseudopotential method. The exchange and correlation interactions are modeled using the generalized gradient approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional. The cutoff kinetic energy of the electron wave function is 340 eV, and the k-point sampling sets 333 division of the reciprocal unit cell based on the Monkhorst-Pack scheme. In the geometrical optimization, all forces on atoms are converged into less than 110-5 eV/atom, the maximum ionic displacement is within 0.001 and the total stress tensor decreases to the order of 0.05 GPa. The DFT calculation results reveal that the symmetry and binding energy decline in the BixBa1-xTiO3 structure, and the bond lengths of BaO and TiO decrease a little after Ba has been substituted by Bi atom, except for the structure of Bi0.5Ba0.5TiO3. The photo-catalysts of BixBa1-xTiO3 are direct band gap semiconductors, and the substitution Bi can regulate the band gaps of BixBa1-xTiO3. The band gaps become wider from x=0.125 to x=0.750 with the carrier concentration decreasing, and then decreases with the higher carrier concentration increasing when x=0.875. It is predicted that the band width of Bi-based perovskite will be much lower than that of Ba-based perovskite. In the case of the density of states we reveal that the top of the valence band is hybrided by O-2p and Bi-6s and the bottom of the conduction band state is mainly constituted by the Ti-3d state. The electron transport properties and carrier types are mainly determined by Ti-3d, O-2p state and Ba-5p electronic states in BaTiO3 and Ti-3d, O-2p, Bi-6s and Bi-6p electronic states in BixBa1-xTiO3 respectively. The absorption spectra indicate that the ultraviolet absorption performance can be improved in BixBa1-xTiO3 system, which may effectively improve the photo-catalytic activity of BaTiO3.
      通信作者: 刘军海, jhliu@lcu.edu.cn
    • 基金项目: 山东省自然科学基金(批准号:ZR2015PB015)和国家自然科学基金(批准号:21406103)资助的课题.
      Corresponding author: Liu Jun-Hai, jhliu@lcu.edu.cn
    • Funds: Project supported by Natural Science Foundation of Shandong Province, China (Grant No. ZR2015PB015) and the National Natural Science Foundation of China (Grant No. 21406103).
    [1]

    Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673

    [2]

    Kazuya N, Akira F 2012 J. Photoch. Photobi. C: Photoch. Rev. 13 169

    [3]

    Zhu X H, Hang Q M, Xing Z M, Yang Y, Zhu J M, Liu Z G, Ming N B, Zhou P, Song Y, Li Z S, Yu T, Zou Z G 2011 J. Am. Ceram. Soc. 94 2688

    [4]

    Hou J G, Jiao S Q, Zhu H M 2011 J. Solid. State. Chem. 184 154

    [5]

    Tayyebeh S, Byeong-Kyu L 2016 J. Hazard. Mater. 316 122

    [6]

    Tong T, Zhang H, Chen J G, Jin D R, Cheng J R 2016 Catal. Commun. 87 23

    [7]

    Pea M A, Fierro J L G 2001 Chem. Rev. 101 1981

    [8]

    Sitko D, Bak W, Garbarz-Glos B, Budziak A, Kajtoch C Kalvane A 2013 Mat. Sci. Eng. 49 012050

    [9]

    Xian T, Di L J, Ma J, Sang C C, Wei X G, Zhou Y J 2017 Chin. J. Mater. Res. 31 102(in Chinese) [县涛, 邸丽景, 马俊, 桑萃萃, 魏学刚, 周永杰 2017 材料研究学报 31 102]

    [10]

    Wang P G, Fan C M, Wang Y W, Ding G Y, Yuan P H 2013 Mater. Res. Bull. 48 869

    [11]

    Devi L G, Krishnamurthy G 2011 J. Phys. Chem. A 115 460

    [12]

    Cui Y F, Briscoe J, Dunn S 2013 J. Chem. Mater. 25 4215

    [13]

    Sarveswaran G, Subramanian B, Mohan S 2014 J. Mater. Chem. C 2 6835

    [14]

    He C, Ma Z J, Sun B Z, Sa R J, Wu K C 2015 J. Alloys Compd. 623 393

    [15]

    Li Z X, Shen Y, Guan Y H, Hu Y H, Lin Y H, Nan C W 2014 J. Mater. Chem. A 2 1967

    [16]

    Klara R, Roberto K, Mnica R, Hans H R, Frank-Dieter K, Anett G 2014 Chem. Eng. J. 239 322

    [17]

    Xu X H, Yao W F, Zhang Y, Zhou A Q, Hou Y, Wang M 2005 Acta Chim. Sin. 63 5(in Chinese) [许效红, 姚伟峰, 张寅, 周爱秋, 侯云, 王民 2005 化学学报 63 5]

    [18]

    Wei W, Dai Y, Huang B B 2009 J. Phys. Chem. C 113 5658

    [19]

    Murugesan S K, Muhammad N H, Yanfa Y, Mowafak M J, Vaidyanathan S 2010 J. Phys. Chem. C 114 10598

    [20]

    Baedi F, Mircholi H 2015 Optik 126 1505

    [21]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [22]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [23]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [24]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [25]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [26]

    Zhao Y Q, Wang X, Liu B, Yu Z L, Yu H L 2018 Org. Electron. 53 50

    [27]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [28]

    Milman V, Refson K, Clark S J, Pickard C J, Yates J R, Gao S P, Hasnip P J, Probert M I J, Perlov A, Segall M D 2010 J. Mol. Struct.: Theochem. 954 22

    [29]

    Luo Z F, Cen W F, Fan M H, Tang J J, Zhao Y J 2015 Acta Phys. Sin. 64 147102(in Chinese) [骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军 2015 物理学报 64 147102]

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [31]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201(in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]

    [32]

    Ma L, Yin Y P, Ding X B, Dong C Z 2017 Acta Phys. Sin. 66 063101(in Chinese) [马磊, 殷耀鹏, 丁晓彬, 董晨钟 2017 物理学报 66 063101]

    [33]

    Suzuki K, Kijima K 2005 Jpn. J. Appl. Phys. 44 2081

    [34]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi 243 2054

    [35]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592(in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [36]

    Zhao Y Q, Wu L J, Liu B, Wang L Z, Cai M Q 2016 J. Power Sources 313 96

    [37]

    Ren C, Li X Y, Luo Q W, Liu R P, Yang Z, Xu L C 2017 Acta Phys. Sin. 66 157101(in Chinese) [任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春 2017 物理学报 66 157101]

  • [1]

    Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673

    [2]

    Kazuya N, Akira F 2012 J. Photoch. Photobi. C: Photoch. Rev. 13 169

    [3]

    Zhu X H, Hang Q M, Xing Z M, Yang Y, Zhu J M, Liu Z G, Ming N B, Zhou P, Song Y, Li Z S, Yu T, Zou Z G 2011 J. Am. Ceram. Soc. 94 2688

    [4]

    Hou J G, Jiao S Q, Zhu H M 2011 J. Solid. State. Chem. 184 154

    [5]

    Tayyebeh S, Byeong-Kyu L 2016 J. Hazard. Mater. 316 122

    [6]

    Tong T, Zhang H, Chen J G, Jin D R, Cheng J R 2016 Catal. Commun. 87 23

    [7]

    Pea M A, Fierro J L G 2001 Chem. Rev. 101 1981

    [8]

    Sitko D, Bak W, Garbarz-Glos B, Budziak A, Kajtoch C Kalvane A 2013 Mat. Sci. Eng. 49 012050

    [9]

    Xian T, Di L J, Ma J, Sang C C, Wei X G, Zhou Y J 2017 Chin. J. Mater. Res. 31 102(in Chinese) [县涛, 邸丽景, 马俊, 桑萃萃, 魏学刚, 周永杰 2017 材料研究学报 31 102]

    [10]

    Wang P G, Fan C M, Wang Y W, Ding G Y, Yuan P H 2013 Mater. Res. Bull. 48 869

    [11]

    Devi L G, Krishnamurthy G 2011 J. Phys. Chem. A 115 460

    [12]

    Cui Y F, Briscoe J, Dunn S 2013 J. Chem. Mater. 25 4215

    [13]

    Sarveswaran G, Subramanian B, Mohan S 2014 J. Mater. Chem. C 2 6835

    [14]

    He C, Ma Z J, Sun B Z, Sa R J, Wu K C 2015 J. Alloys Compd. 623 393

    [15]

    Li Z X, Shen Y, Guan Y H, Hu Y H, Lin Y H, Nan C W 2014 J. Mater. Chem. A 2 1967

    [16]

    Klara R, Roberto K, Mnica R, Hans H R, Frank-Dieter K, Anett G 2014 Chem. Eng. J. 239 322

    [17]

    Xu X H, Yao W F, Zhang Y, Zhou A Q, Hou Y, Wang M 2005 Acta Chim. Sin. 63 5(in Chinese) [许效红, 姚伟峰, 张寅, 周爱秋, 侯云, 王民 2005 化学学报 63 5]

    [18]

    Wei W, Dai Y, Huang B B 2009 J. Phys. Chem. C 113 5658

    [19]

    Murugesan S K, Muhammad N H, Yanfa Y, Mowafak M J, Vaidyanathan S 2010 J. Phys. Chem. C 114 10598

    [20]

    Baedi F, Mircholi H 2015 Optik 126 1505

    [21]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [22]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [23]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [24]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [25]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [26]

    Zhao Y Q, Wang X, Liu B, Yu Z L, Yu H L 2018 Org. Electron. 53 50

    [27]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [28]

    Milman V, Refson K, Clark S J, Pickard C J, Yates J R, Gao S P, Hasnip P J, Probert M I J, Perlov A, Segall M D 2010 J. Mol. Struct.: Theochem. 954 22

    [29]

    Luo Z F, Cen W F, Fan M H, Tang J J, Zhao Y J 2015 Acta Phys. Sin. 64 147102(in Chinese) [骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军 2015 物理学报 64 147102]

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [31]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201(in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]

    [32]

    Ma L, Yin Y P, Ding X B, Dong C Z 2017 Acta Phys. Sin. 66 063101(in Chinese) [马磊, 殷耀鹏, 丁晓彬, 董晨钟 2017 物理学报 66 063101]

    [33]

    Suzuki K, Kijima K 2005 Jpn. J. Appl. Phys. 44 2081

    [34]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi 243 2054

    [35]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592(in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [36]

    Zhao Y Q, Wu L J, Liu B, Wang L Z, Cai M Q 2016 J. Power Sources 313 96

    [37]

    Ren C, Li X Y, Luo Q W, Liu R P, Yang Z, Xu L C 2017 Acta Phys. Sin. 66 157101(in Chinese) [任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春 2017 物理学报 66 157101]

  • [1] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [2] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [3] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [4] 吴圣钰, 张耘, 柏红梅, 梁金玲. Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究. 物理学报, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [5] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [6] 马磊, 殷耀鹏, 丁晓彬, 董晨钟. Np(NO3)nq(n=16,q=-2+3)配合物的结构和性质. 物理学报, 2017, 66(6): 063101. doi: 10.7498/aps.66.063101
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响. 物理学报, 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [9] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [10] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [11] 邓永和, 刘京铄. Mg-TM-H (TM=Sc, Ti, V, Y, Zr, Nb)晶体形成能力和电子性能. 物理学报, 2011, 60(11): 117102. doi: 10.7498/aps.60.117102
    [12] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [13] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究. 物理学报, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [14] 张竹霞, 赵彦亮, 闫新, 韩培德, 刘旭光, 郝玉英, 许并社. 富勒烯衍生物苯基C71-丁酸甲酯的结构和电学性质第一性原理研究. 物理学报, 2009, 58(13): 204-S209. doi: 10.7498/aps.58.204
    [15] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [16] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [18] 张艳萍, 张丰收, 蒙克来, 肖国青. Na5, Na6和Na7团簇光学吸收谱的理论研究. 物理学报, 2007, 56(4): 2092-2097. doi: 10.7498/aps.56.2092
    [19] 王红艳, 李喜波, 唐永建, 谌晓洪, 王朝阳, 朱正和. AunXm(n+m=4,X=Cu,Al,Y)混合小团簇的结构和稳定性研究. 物理学报, 2005, 54(8): 3565-3570. doi: 10.7498/aps.54.3565
    [20] 吕瑾, 许小红, 武海顺. 3d系列 (TM)4 团簇的结构和磁性. 物理学报, 2004, 53(4): 1050-1055. doi: 10.7498/aps.53.1050
计量
  • 文章访问数:  5459
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-02-17
  • 刊出日期:  2018-06-05

/

返回文章
返回