-
本文指出,非线性(演化)系统的广义Lax表示所取值的代数,即延拓代数y×D(λ),实质上是Kac-Moody代数。这里,y是一有限维李代数,D(λ)是谱参数λ的值域。本文并利用Dolan关于主手征模型Kac-Moody代数的实现,给出了一类1+1维非线性(演化)系统的Kac-Moody代数的实现。It is shown that the algebra valued by the generalized Lax representation of nonlinear (evolution) system, i.e. the prolongation algebra y×D(λ), is in fact Kac-Moody type algebra where y is a finite dimensional Lie algebra and D(λ) the domain of value of the spectral parameter λ. The realization of the Kac-Moody algebra in a kind of 2 dimensional nonlinear (evolution) systems has been given by means of the realization of the Kac-Moody algebra in the principal chiral model due to Dolan.
计量
- 文章访问数: 7980
- PDF下载量: 542
- 被引次数: 0