搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Na1/2Bi1/2)Cu3Ti4O12陶瓷的微观结构和电学性质

陈戈 张家良 郝文涛 谭永强 郑鹏 邵守福

引用本文:
Citation:

(Na1/2Bi1/2)Cu3Ti4O12陶瓷的微观结构和电学性质

陈戈, 张家良, 郝文涛, 谭永强, 郑鹏, 邵守福

Microstructures and electrical properties of (Na1/2Bi1/2)Cu3Ti4O12 ceramics

Chen Ge, Zhang Jia-Liang, Hao Wen-Tao, Tan Yong-Qiang, Zheng Peng, Shao Shou-Fu
PDF
导出引用
  • 利用固相反应法在不同烧结温度条件下制备了一系列(Na1/2Bi1/2)Cu3Ti4O12(NBCTO)陶瓷样品,研究了它们的晶体结构、微观组织结构、介电性质和复阻抗及其随温度的变化. 实验发现NBCTO陶瓷所呈现出的电学性质与CaCu3Ti4O12陶瓷相应的电学性质非常类似. 烧结温度为990℃至1060℃范围的NBCTO陶瓷样品室
    A series of (Na1/2Bi1/2)Cu3Ti4O12 (NBCTO) ceramics were prepared by solid-state reaction at different sintering temperatures. The crystal structure,microstructures,dielectric properties and complex impedance and the corresponding temperature dependences were investigated. It has been revealed that the NBCTO ceramics has quite similar electrical properties with those previously found in CaCu3Ti4O12ceramics. The NBCTO ceramics prepared at sintering temperatures between 990℃ and 1060℃ exhibit low-frequency ε′ larger than 10000 at room temperature. With the increasing of sintering temperature,both ε′ and the grain size in microstructure first increase and then decrease. Although large difference is observed in their dielectric properties and complex impedance for the various NBCTO ceramics,there exist some common features. Whereas only one dielectric relaxation is seen at room temperature or lower temperatures,two are seen in the dielectric spectra within the measured frequency range of 40 Hz—10 MHz at higher temperatures.
    • 基金项目: 国家重点基础研究发展计划(973)项目(批准号:2007CB607504),教育部“新世纪优秀人才支持计划”项目(批准号:NCET-06-0587)资助的课题.
    [1]

    [1] Zhao Y L,Jiao Z K,Cao G H 2003 Acta Phys. Sin. 52 1500 (in Chinese) [赵彦立、焦正宽、曹光旱 2003 物理学报 52 1500]

    [2]

    [2] Zhou X L,Du P Y 2005 Acta Phys. Sin. 54 354 (in Chinese) [周晓莉、杜丕一 2005 物理学报 54 354]

    [3]

    [3] Liu P,He Y,Li J,Zhu G Q,Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese) [刘鹏、何颖、李俊、朱刚强、边小兵 2007 物理学报 56 5489]

    [4]

    [4] Subramanian M A,Li D,Duan N,Reisner B A,Sleight A W 2000 J. Solid State Chem. 151 323

    [5]

    [5] Ramirez A P,Subramanian M A,Gardel M,Blumberg G,Li D,Vogt T,Shapiro S M 2000 Solid State Commun. 115 217

    [6]

    [6] Holmes C C,Vogt T,Shapiro S M,Wakimoto S,Ramirez A P 2001 Science. 293 637

    [7]

    [7] Sinclair D C,Adams T B,Morrison F D,West A R 2002 Appl.Phys. Lett. 80 2153

    [8]

    [8] Adams T B,Sinclair D C,West A R 2002 Adv. Mater. (Weinheim,Ger.) 14 1321

    [9]

    [9] Cohen M H,Neaton J B,He L,Vanderbilt D 2003 J. Appl. Phys. 94 3299

    [10]

    ]Lunkenheimer P,Fichtl R,Ebbinghaus S G,Loidl A 2004 Phys. Rev. B 70 172102

    [11]

    ]Fang T T,Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [12]

    ]Bender B A,Pan M J 2005 Mater. Sci. Eng. B 117 339

    [13]

    ]Ni L,Chen X M,Liu X Q,Hou R Z 2006 Solid State Commun. 139 45

    [14]

    ]Zhang L,Tang Z J 2004 Phys. Rev. B 70 174306

    [15]

    ]Capsoni D,Bini M,Massarotti V,Chiodelli G,Mozzatic M C,Azzoni C B 2004 J. Solid State Chem. 177 4494

    [16]

    ]Li J,Subramanian M A,Rosenfeld H D,Jones C Y,Toby B H,Sleight A W 2004 Chem. Mater. 16 5223

    [17]

    ]Fang T T,Li T M,Hei H F 2006 Acta Mater. 54 2867

    [18]

    ]Fang T T,Li T M 2007 J. Am. Ceram. Soc. 90 638

    [19]

    ]Li M,Feteira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 88 232903

    [20]

    ]Subramanian M A,Sleight A W 2002 Solid State Sci. 4 347

    [21]

    ]Liu J J,Duan C G,Mei W N 2005 J. Appl. Phys. 98 093703

    [22]

    ]Ferrarelli M C,Adams T B,Feterira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 89 212904

    [23]

    ]Zuo R Q,Feng L X,Yan Y Y,Chen B,Cao G H 2007 Solid State Commun. 91 138

    [24]

    ]Shao S F,Zhang J L,Zheng P,Zhong W L,Wang C L 2006 J. Appl. Phys. 99 086104

    [25]

    ]Shao S F,Zheng P,Zhang J L,Niu X K,Wang C L,Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 物理学报 55 6661]

    [26]

    ]Zhang J L,Zheng P,Wang C L,Zhao M L,Li J C,Wang J F 2005 Appl. Phys. Lett. 87 142901

    [27]

    ]Zhang J L,Zheng P,Shao S F,Su W B,Wang C L 2007 Ferroelectrics 356 85

  • [1]

    [1] Zhao Y L,Jiao Z K,Cao G H 2003 Acta Phys. Sin. 52 1500 (in Chinese) [赵彦立、焦正宽、曹光旱 2003 物理学报 52 1500]

    [2]

    [2] Zhou X L,Du P Y 2005 Acta Phys. Sin. 54 354 (in Chinese) [周晓莉、杜丕一 2005 物理学报 54 354]

    [3]

    [3] Liu P,He Y,Li J,Zhu G Q,Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese) [刘鹏、何颖、李俊、朱刚强、边小兵 2007 物理学报 56 5489]

    [4]

    [4] Subramanian M A,Li D,Duan N,Reisner B A,Sleight A W 2000 J. Solid State Chem. 151 323

    [5]

    [5] Ramirez A P,Subramanian M A,Gardel M,Blumberg G,Li D,Vogt T,Shapiro S M 2000 Solid State Commun. 115 217

    [6]

    [6] Holmes C C,Vogt T,Shapiro S M,Wakimoto S,Ramirez A P 2001 Science. 293 637

    [7]

    [7] Sinclair D C,Adams T B,Morrison F D,West A R 2002 Appl.Phys. Lett. 80 2153

    [8]

    [8] Adams T B,Sinclair D C,West A R 2002 Adv. Mater. (Weinheim,Ger.) 14 1321

    [9]

    [9] Cohen M H,Neaton J B,He L,Vanderbilt D 2003 J. Appl. Phys. 94 3299

    [10]

    ]Lunkenheimer P,Fichtl R,Ebbinghaus S G,Loidl A 2004 Phys. Rev. B 70 172102

    [11]

    ]Fang T T,Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [12]

    ]Bender B A,Pan M J 2005 Mater. Sci. Eng. B 117 339

    [13]

    ]Ni L,Chen X M,Liu X Q,Hou R Z 2006 Solid State Commun. 139 45

    [14]

    ]Zhang L,Tang Z J 2004 Phys. Rev. B 70 174306

    [15]

    ]Capsoni D,Bini M,Massarotti V,Chiodelli G,Mozzatic M C,Azzoni C B 2004 J. Solid State Chem. 177 4494

    [16]

    ]Li J,Subramanian M A,Rosenfeld H D,Jones C Y,Toby B H,Sleight A W 2004 Chem. Mater. 16 5223

    [17]

    ]Fang T T,Li T M,Hei H F 2006 Acta Mater. 54 2867

    [18]

    ]Fang T T,Li T M 2007 J. Am. Ceram. Soc. 90 638

    [19]

    ]Li M,Feteira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 88 232903

    [20]

    ]Subramanian M A,Sleight A W 2002 Solid State Sci. 4 347

    [21]

    ]Liu J J,Duan C G,Mei W N 2005 J. Appl. Phys. 98 093703

    [22]

    ]Ferrarelli M C,Adams T B,Feterira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 89 212904

    [23]

    ]Zuo R Q,Feng L X,Yan Y Y,Chen B,Cao G H 2007 Solid State Commun. 91 138

    [24]

    ]Shao S F,Zhang J L,Zheng P,Zhong W L,Wang C L 2006 J. Appl. Phys. 99 086104

    [25]

    ]Shao S F,Zheng P,Zhang J L,Niu X K,Wang C L,Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 物理学报 55 6661]

    [26]

    ]Zhang J L,Zheng P,Wang C L,Zhao M L,Li J C,Wang J F 2005 Appl. Phys. Lett. 87 142901

    [27]

    ]Zhang J L,Zheng P,Shao S F,Su W B,Wang C L 2007 Ferroelectrics 356 85

  • [1] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [2] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算. 物理学报, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [3] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [4] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [5] 郭熹, 王霞, 郑鹉, 唐为华. Eu掺杂TbMnO3多晶材料的介电性质. 物理学报, 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [6] 尹桂来, 李建英, 李盛涛. 利用普适介电理论对银/氧化锌复合材料介电性能的研究. 物理学报, 2009, 58(6): 4219-4224. doi: 10.7498/aps.58.4219
    [7] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [8] 周小莉, 杜丕一. 阻挡层电容对ACu3Ti4O12巨介电性能的影响研究. 物理学报, 2005, 54(1): 354-358. doi: 10.7498/aps.54.354
    [9] 高祀建, 欧阳世翕. γ射线辐照对电熔石英玻璃介电性质的影响. 物理学报, 2003, 52(5): 1292-1296. doi: 10.7498/aps.52.1292
    [10] 李正法, 张沛霖, 赵明磊, 王春雷, 钟维烈, 王增梅, 袁多荣. La3Ga5SiO14晶体的介电性质、弹性与压电性质. 物理学报, 2003, 52(3): 726-728. doi: 10.7498/aps.52.726
    [11] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [12] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [13] 蒋亦民. 关于色散流体的介电方程. 物理学报, 1997, 46(7): 1332-1337. doi: 10.7498/aps.46.1332
    [14] 邱志勇, 潘胜, 胡林, 刘湘, 周鲁卫. 电流变液的流变学响应与其非线性介电性质的关系. 物理学报, 1997, 46(2): 314-323. doi: 10.7498/aps.46.314
    [15] 李景德, 曹万强, 李向前, 符德胜. 时域介电谱方法及其应用. 物理学报, 1996, 45(7): 1225-1231. doi: 10.7498/aps.45.1225
    [16] 李景德, 李家宝, 符史流, 沈文彬. 自由和随机介电弛豫. 物理学报, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
    [17] 阮耀钟, 李立平, 何平笙, 姚刚. TS及PTS聚合过程的介电性质研究. 物理学报, 1989, 38(1): 149-153. doi: 10.7498/aps.38.149
    [18] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性. 物理学报, 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
    [19] 阮耀钟, 李立平, 陈友君, 何平笙. PTS单晶的介电性质. 物理学报, 1987, 36(11): 1503-1508. doi: 10.7498/aps.36.1503
    [20] 朱镛, 张道范, 成希敏. α-碘酸锂的介电和导电行为. 物理学报, 1977, 26(2): 115-123. doi: 10.7498/aps.26.115
计量
  • 文章访问数:  5120
  • PDF下载量:  835
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-20
  • 修回日期:  2009-09-22
  • 刊出日期:  2010-05-15

(Na1/2Bi1/2)Cu3Ti4O12陶瓷的微观结构和电学性质

  • 1. 山东大学物理系,济南 250100
    基金项目: 国家重点基础研究发展计划(973)项目(批准号:2007CB607504),教育部“新世纪优秀人才支持计划”项目(批准号:NCET-06-0587)资助的课题.

摘要: 利用固相反应法在不同烧结温度条件下制备了一系列(Na1/2Bi1/2)Cu3Ti4O12(NBCTO)陶瓷样品,研究了它们的晶体结构、微观组织结构、介电性质和复阻抗及其随温度的变化. 实验发现NBCTO陶瓷所呈现出的电学性质与CaCu3Ti4O12陶瓷相应的电学性质非常类似. 烧结温度为990℃至1060℃范围的NBCTO陶瓷样品室

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回