搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/TiOx复合薄膜的电子态分析及其对亲水性的影响

徐蕙 王顺利 刘爱萍 陈本永 唐为华

引用本文:
Citation:

Cu/TiOx复合薄膜的电子态分析及其对亲水性的影响

徐蕙, 王顺利, 刘爱萍, 陈本永, 唐为华

Electronic state and its effect on the hydrophilicity of Cu/TiOx composite films

Xu Hui, Wang Shun-Li, Liu Ai-Ping, Chen Ben-Yong, Tang Wei-Hua
PDF
导出引用
  • 在室温下,采用射频磁控溅射法制备了Cu/TiOx纳米晶复合薄膜.利用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)对其结构进行表征,并研究了Cu/TiOx复合薄膜的UV-vis吸收谱和亲水性.结果表明,退火前后薄膜中钛元素皆以Ti3+形式存在.薄膜在可见区有吸收,吸收限为600 nm左右.Cu/TiOx复合薄膜具有良好的亲水性.这主要是由于Cu的掺杂,使得薄膜的性能的亲水性变好.
    Cu/TiOx composite films have been deposited by RF magnetron sputtering at room temperature. The chemical components and structures of the Cu/TiOx composite films have been characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and water contact angel measurement. It is found that the titanium presents in the form of Ti3+ before and after annealing. The results of UV-vis spectroscopy show the visible light absorption features of Cu/TiOx composite films with the absorption edge at about 600 nm. Contact angle results indicate that the Cu/TiOx films are hydrophilic, which is attributed to the added Cu.
    • 基金项目: 国家自然科学基金(批准号:60571029,50672088),浙江省教育厅科研项目(批准号:Y200806012)和浙江省自然科学基金杰出青年团队项目(批准号:R4090058)资助的课题.
    [1]

    [1]Park D R, Zhang J, Ikeue K, Yamashita H, Anpo M 1999 J. Catal. 185 114

    [2]

    [2]Francois M, Danglot J, Grimbert B, Mounaix P, Muller M, Vanbe-sien O, Lippens D 2002 Microelectron. Eng. 61 537

    [3]

    [3]Hagfeldt A, Graetzel M 1995 Chem. Rev. 95 49

    [4]

    [4]Li Y, Sun S, Ma M, Ouyang Y, Yan W 2008 Chem. Eng. J. 142 147

    [5]

    [5]Sunada K, Watanabe T, Hashimoto K 2003 Environ. Sci. Technol. 37 4785

    [6]

    [6]Ollis D F, Pelizzetti E, Serpone N 1991 Environ. Sci. Technol. 25 1522

    [7]

    [7]Lee D, Rubner M F, Cohen R E 2006 Nano Lett. 6 2305

    [8]

    [8]Liu Y Y, Qian L Q, Gou C, Jia X, Wang J W, Tang W H 2009 J. Alloys Compd. 479 532

    [9]

    [9]Jian J K, Li Q, Sun Y F, Zheng Y F, Zhou X L 2008 Acta Phys.Sin. 57 3880 ( in Chinese ) [简基康、李茜、孙言飞、郑毓峰、周向玲 2008 物理学报 57 3880]

    [10]

    ]Young C, Lim T M, Chiang K, Scott J, Amal R 2008 Appl. Catal. B: Environ. 78 1

    [11]

    ]Paramasivam I, Macak J M, Schmuki P 2008 Electrochem. Commun. 10 71

    [12]

    ]Kontapakdee K, Panpranot J, Praserthdam P 2007 Catal. Commun. 8 2166

    [13]

    ]Patil S R, tangar U L, Gross S, Schubert U 2008 J. Adv. Oxid. Technol. 11 327

    [14]

    ]Meng F M, Sun Z Q 2009 Appl. Sur. Sci. 255 6715

    [15]

    ]Ashkaarran A A, Mohammadizadeh M R 2007 Eur. Phys. J. Appl. Phys. 40 155

    [16]

    ]Wang D Y, Lin H C, Yen C C 2006 Thin Solid Films 515 1047

    [17]

    ]Geng X H, Sun J, Sun F H, Wang G H, Wei C C, Xiong S Z, Xu S Z, Yue Q, Zhang X D, Zhao Y 2009 Acta Phys.Sin. 58 1293 ( in Chinese ) [耿新华、孙建、孙福河、王光红、魏长春、熊绍珍、许盛之、岳强、张晓丹、赵颖 2009 物理学报 58 1293]

    [18]

    ]Sirghi L, Nakamura M, Hatanaka Y, Takai O 2001 Langmuir 17 8199

    [19]

    ]Shen J, Wo S T, Cui X L, Cai Z W, Yang X L, Zhang Z J 2004 Acta Phys. -Chim. Sin. 20 1191 (in Chinese) [沈杰、沃松涛、崔晓莉、蔡臻炜、杨锡良、章壮健 2004 物理化学学报 20 1191]

    [20]

    ]Ji F, Ma J, Ma H L, Wang Y H,Yu X H, Zhang X J 2005 Acta Phys.Sin. 54 1731 ( in Chinese ) [计峰、马瑾、马洪磊、王玉恒、余旭浒、张锡健 2005 物理学报 54 1731]

    [21]

    ]Liu S H, Wang D H, Pan C H 1988 X-ray Photoelectron Spectroscopy (1st ed) ( Beijing: Science Press ) p47 ( in Chinese ) [刘世宏、王当憨、潘承璜 1988 X-射线光电子能谱分析 (第一版) (北京:科学出版社) 第47页]

    [22]

    ]Hou D L, Zhao R B, Meng H J, Jia L Y, Ye X J, Zhou H J, Li X L 2008 Thin Solid Films 516 3223

    [23]

    ]Wang D Y, Lin H C, Yen C C 2006 Thin Solid Films 515 1047

    [24]

    ]Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F 1994 J. Appl. Phys. 75 2945

    [25]

    ]Liang Y J, Che M C 1993 The Handbook of Inorganic Thermodynamics (1st ed) (Shenyang: Northeasten University Press) p379 [梁英教、车荫昌 1993 无机物热力学数据手册 (第一版)(沈阳:东北大学出版社)第379页]

    [26]

    ]Lee H J, Hahn S H, Kim E J, You Y Z 2004 J. Mater. Sci. 39 3683

    [27]

    ]Zhang Y, Wang S T, Li X B, Chen L Y, Qian Y T, Zhang Z D 2006 J. Crystal Growth 291 196

    [28]

    ]Xu Y Y, Chen D R, Jiao X. L 2005 J. Phys. Chem. 109 13561

    [29]

    ]Zhang L L, Liu P Y, Zhong F, Zuo L, Sun W D 2005 J. Vac. Sci. Technol. 25 259 ( in Chinese ) [张丽丽、刘彭义、仲飞、翟琳、孙汪典 2005 真空科学与技术学报 25 259]

    [30]

    ]Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K 1998 Langmuir 14 5918

  • [1]

    [1]Park D R, Zhang J, Ikeue K, Yamashita H, Anpo M 1999 J. Catal. 185 114

    [2]

    [2]Francois M, Danglot J, Grimbert B, Mounaix P, Muller M, Vanbe-sien O, Lippens D 2002 Microelectron. Eng. 61 537

    [3]

    [3]Hagfeldt A, Graetzel M 1995 Chem. Rev. 95 49

    [4]

    [4]Li Y, Sun S, Ma M, Ouyang Y, Yan W 2008 Chem. Eng. J. 142 147

    [5]

    [5]Sunada K, Watanabe T, Hashimoto K 2003 Environ. Sci. Technol. 37 4785

    [6]

    [6]Ollis D F, Pelizzetti E, Serpone N 1991 Environ. Sci. Technol. 25 1522

    [7]

    [7]Lee D, Rubner M F, Cohen R E 2006 Nano Lett. 6 2305

    [8]

    [8]Liu Y Y, Qian L Q, Gou C, Jia X, Wang J W, Tang W H 2009 J. Alloys Compd. 479 532

    [9]

    [9]Jian J K, Li Q, Sun Y F, Zheng Y F, Zhou X L 2008 Acta Phys.Sin. 57 3880 ( in Chinese ) [简基康、李茜、孙言飞、郑毓峰、周向玲 2008 物理学报 57 3880]

    [10]

    ]Young C, Lim T M, Chiang K, Scott J, Amal R 2008 Appl. Catal. B: Environ. 78 1

    [11]

    ]Paramasivam I, Macak J M, Schmuki P 2008 Electrochem. Commun. 10 71

    [12]

    ]Kontapakdee K, Panpranot J, Praserthdam P 2007 Catal. Commun. 8 2166

    [13]

    ]Patil S R, tangar U L, Gross S, Schubert U 2008 J. Adv. Oxid. Technol. 11 327

    [14]

    ]Meng F M, Sun Z Q 2009 Appl. Sur. Sci. 255 6715

    [15]

    ]Ashkaarran A A, Mohammadizadeh M R 2007 Eur. Phys. J. Appl. Phys. 40 155

    [16]

    ]Wang D Y, Lin H C, Yen C C 2006 Thin Solid Films 515 1047

    [17]

    ]Geng X H, Sun J, Sun F H, Wang G H, Wei C C, Xiong S Z, Xu S Z, Yue Q, Zhang X D, Zhao Y 2009 Acta Phys.Sin. 58 1293 ( in Chinese ) [耿新华、孙建、孙福河、王光红、魏长春、熊绍珍、许盛之、岳强、张晓丹、赵颖 2009 物理学报 58 1293]

    [18]

    ]Sirghi L, Nakamura M, Hatanaka Y, Takai O 2001 Langmuir 17 8199

    [19]

    ]Shen J, Wo S T, Cui X L, Cai Z W, Yang X L, Zhang Z J 2004 Acta Phys. -Chim. Sin. 20 1191 (in Chinese) [沈杰、沃松涛、崔晓莉、蔡臻炜、杨锡良、章壮健 2004 物理化学学报 20 1191]

    [20]

    ]Ji F, Ma J, Ma H L, Wang Y H,Yu X H, Zhang X J 2005 Acta Phys.Sin. 54 1731 ( in Chinese ) [计峰、马瑾、马洪磊、王玉恒、余旭浒、张锡健 2005 物理学报 54 1731]

    [21]

    ]Liu S H, Wang D H, Pan C H 1988 X-ray Photoelectron Spectroscopy (1st ed) ( Beijing: Science Press ) p47 ( in Chinese ) [刘世宏、王当憨、潘承璜 1988 X-射线光电子能谱分析 (第一版) (北京:科学出版社) 第47页]

    [22]

    ]Hou D L, Zhao R B, Meng H J, Jia L Y, Ye X J, Zhou H J, Li X L 2008 Thin Solid Films 516 3223

    [23]

    ]Wang D Y, Lin H C, Yen C C 2006 Thin Solid Films 515 1047

    [24]

    ]Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F 1994 J. Appl. Phys. 75 2945

    [25]

    ]Liang Y J, Che M C 1993 The Handbook of Inorganic Thermodynamics (1st ed) (Shenyang: Northeasten University Press) p379 [梁英教、车荫昌 1993 无机物热力学数据手册 (第一版)(沈阳:东北大学出版社)第379页]

    [26]

    ]Lee H J, Hahn S H, Kim E J, You Y Z 2004 J. Mater. Sci. 39 3683

    [27]

    ]Zhang Y, Wang S T, Li X B, Chen L Y, Qian Y T, Zhang Z D 2006 J. Crystal Growth 291 196

    [28]

    ]Xu Y Y, Chen D R, Jiao X. L 2005 J. Phys. Chem. 109 13561

    [29]

    ]Zhang L L, Liu P Y, Zhong F, Zuo L, Sun W D 2005 J. Vac. Sci. Technol. 25 259 ( in Chinese ) [张丽丽、刘彭义、仲飞、翟琳、孙汪典 2005 真空科学与技术学报 25 259]

    [30]

    ]Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K 1998 Langmuir 14 5918

  • [1] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [2] 郭红力, 杨焕银, 唐焕芳, 侯海军, 郑勇林, 朱建国. 高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响. 物理学报, 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [3] 王友发, 吴周礼, 李文润, 王帅, 童红双, 阮永丰. 掺铈YVO4 晶体的发光特性及铈离子的价态分析. 物理学报, 2012, 61(22): 228105. doi: 10.7498/aps.61.228105
    [4] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [5] 张宇, 温斌, 宋肖阳, 李廷举. 不同氮掺杂浓度碳纳米管的制备及其成键特性分析. 物理学报, 2010, 59(5): 3583-3588. doi: 10.7498/aps.59.3583
    [6] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质. 物理学报, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [7] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备. 物理学报, 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [8] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [9] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [10] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [11] 王振宁, 江美福, 宁兆元, 朱 丽. 磁控共溅射法制备的Zn2GeO4多晶薄膜结构及其光致发光研究. 物理学报, 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [12] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静. GeC薄膜的射频磁控反应溅射制备及性质. 物理学报, 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [13] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [14] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [15] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟. 物理学报, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [16] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [17] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 射频磁控溅射法生长MgxZn1-xO薄膜的结构和光学特性. 物理学报, 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [18] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [19] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [20] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
计量
  • 文章访问数:  6801
  • PDF下载量:  609
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-07
  • 修回日期:  2009-09-01
  • 刊出日期:  2010-05-15

/

返回文章
返回