-
利用齐次平衡方法,将(2+1)维 Konopelchenko-Dubrovsky方程转化为两个变量分离的线性偏微分方程,然后采用三种不同的函数假设,得到相应的常系数微分方程,通过求解特征方程,方便地构造出Konopelchenko-Dubrovsky方程新的多孤子解.
-
关键词:
- (2+1)维 Konopelchenko-Dubrovsky 方程 /
- 齐次平衡法 /
- 多孤子解
In this paper, using the homogeneous balance method, the (2+1) dimensional Konopelchenko-Dubrovsky equations are converted into two variable-separated linear partial differential equations. for three different function assumptions, the constant coefficient differential equations are obtained, respectively. By solving the eigenequations, new multisoliton solutions of the KD equations are constructed conveniently.-
Keywords:
- (2+1) dimensional Konopelchenko-Dubrovsky equations /
- homogeneous balance method /
- multisoliton solutions







下载: