搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含单负特异材料一维无序扰动周期结构中的光子局域特性研究

刘冬梅 韩鹏

引用本文:
Citation:

含单负特异材料一维无序扰动周期结构中的光子局域特性研究

刘冬梅, 韩鹏

Wave localization in one-dimensional periodic-on-average disordered system composed of single-negative metamaterials

Liu Dong-Mei, Han Peng
PDF
导出引用
  • 采用传输矩阵法研究了电磁波在由单负特异材料组成的一维无序扰动周期结构中的Anderson局域(Anderson Localization)行为,分别讨论了色散和非色散两种模型.结果发现,在对应周期结构的通带位置,无序的引入对局域长度的影响较大,而在带隙位置,影响较小,几乎可以忽略.该性质与我们曾讨论的随机结构有较明显不同.导致这种局域性质的主要原因应为,光在单负材料组成的系统中的传输主要依赖于两种单负材料间的界面.在无序扰动结构中,该界面数相对于周期结构并没有减少,因此对光的传输性质影响较小,而随机结构中
    By using the transfer-matrix method,we study the Anderson localization behavior in one-dimensional periodic-on-average disordered system composed of two different single-negative(SNG) metamaterials. Non-dispersive and dipersive models have been studied respectively. It was found that the disorder has great effect on waves with frequency in the pass band of the corresponding periodic structure. However,inside the gap,the effect can be almost ignored. These features are different from those we ever found in the random single-negative system. The main reason of the difference should be the number of the interfaces between two kinds of single negative metamateirals,which should be the basic mechanism of the wave propagation in systems made of single negative metamaterials. In periodic-on-average disordered systems,the number of the interface is the same as that in periodic one. However,there is an obvious decrease in random systems,which will have a great effect on the ability of wave transport,leading to small localization length. In the case of a dispersive model,it has been proved that the randomness has no effect on the wave propagation with frequency at the center of the gap. Especially,this special point becomes a delocalization point when the ratio of effective optical thickness of two single negative materials equals one. The results facilitates further understanding of the wave transport mechanism in systems composed of metamaterials.
    • 基金项目: 国家自然科学基金(批准号: 10504008)、教育部科学技术研究基金重点项目(批准号: 209091)资助的课题.
    [1]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE T. Microw. Theory 47 2075

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Express 16 6860

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Pendry J B 2006 Science 312 1780

    [7]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [8]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [9]

    John S 1987 Phys. Rev. Lett. 58 2486

    [10]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [11]

    Wang Z D, Liu N H 2009 Acta Phys. Sin. 58 0559 (in Chinese) [王振德、 刘念华 2009 物理学报 58 0559]

    [12]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [13]

    Jiang H, Chen H, Li H, Zhang Y, Zi J 2004 Phys. Rev. E 69 066607

    [14]

    Chen Y H, Dong J W, Wang H Z 2006 Appl. Phys. Lett. 89 141101

    [15]

    Anderson P W 1958 Phys. Rev. 109 1492

    [16]

    Wiersma D S 1997 Nature 390 671

    [17]

    Storzer M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [18]

    Foret M, Courtens E, Vacher R, Suck J B 1996 Phys. Rev. Lett. 77 3831

    [19]

    Billy J 2008 Nature 453 891

    [20]

    Roati G 2008 Nature 453 895

    [21]

    Jahnke L, Kantelhardt J W, Berkovits R 2008 Phys. Rev. Lett. 101 175702

    [22]

    Sheng P 1990 Scattering and Localization of Classical Waves in Random Media (Singapore: World Scientific)

    [23]

    Ghulinyan M 2007 Phys. Rev. Lett. 99 063905

    [24]

    Sebbah P, Hu B, Klosner J M, Genack A Z 2006 Phys. Rev. Lett. 96 183902

    [25]

    Han P, Zheng C J 2008 Phys. Rev. E 77 041111

    [26]

    Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩 鹏、 汪河洲 2005 物理学报 54 338]

    [27]

    Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1520

    [28]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [29]

    Dong Y, Zhang X 2006 Phys. Lett. A 359 542

    [30]

    Asatryan IIA A, Botten L C, Byrne M A, Freilikher V D, Gredeskul S A 2007 Phys. Rev. Lett. 99 193902

    [31]

    Nascimento E M, Moura F A B F de, Lyra M L 2008 Opt.

    [32]

    Han P, Chan C T, Zhang Z Q 2008 Phys. Rev. B 77 115332

  • [1]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE T. Microw. Theory 47 2075

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Express 16 6860

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Pendry J B 2006 Science 312 1780

    [7]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [8]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [9]

    John S 1987 Phys. Rev. Lett. 58 2486

    [10]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [11]

    Wang Z D, Liu N H 2009 Acta Phys. Sin. 58 0559 (in Chinese) [王振德、 刘念华 2009 物理学报 58 0559]

    [12]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [13]

    Jiang H, Chen H, Li H, Zhang Y, Zi J 2004 Phys. Rev. E 69 066607

    [14]

    Chen Y H, Dong J W, Wang H Z 2006 Appl. Phys. Lett. 89 141101

    [15]

    Anderson P W 1958 Phys. Rev. 109 1492

    [16]

    Wiersma D S 1997 Nature 390 671

    [17]

    Storzer M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [18]

    Foret M, Courtens E, Vacher R, Suck J B 1996 Phys. Rev. Lett. 77 3831

    [19]

    Billy J 2008 Nature 453 891

    [20]

    Roati G 2008 Nature 453 895

    [21]

    Jahnke L, Kantelhardt J W, Berkovits R 2008 Phys. Rev. Lett. 101 175702

    [22]

    Sheng P 1990 Scattering and Localization of Classical Waves in Random Media (Singapore: World Scientific)

    [23]

    Ghulinyan M 2007 Phys. Rev. Lett. 99 063905

    [24]

    Sebbah P, Hu B, Klosner J M, Genack A Z 2006 Phys. Rev. Lett. 96 183902

    [25]

    Han P, Zheng C J 2008 Phys. Rev. E 77 041111

    [26]

    Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩 鹏、 汪河洲 2005 物理学报 54 338]

    [27]

    Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1520

    [28]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [29]

    Dong Y, Zhang X 2006 Phys. Lett. A 359 542

    [30]

    Asatryan IIA A, Botten L C, Byrne M A, Freilikher V D, Gredeskul S A 2007 Phys. Rev. Lett. 99 193902

    [31]

    Nascimento E M, Moura F A B F de, Lyra M L 2008 Opt.

    [32]

    Han P, Chan C T, Zhang Z Q 2008 Phys. Rev. B 77 115332

  • [1] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用. 物理学报, 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [2] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态. 物理学报, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [3] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [4] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [5] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [6] 胡冬生, 张艳玲, 尹小刚, 徐江. 非线性强度任意二聚的非线性链的透射性质. 物理学报, 2012, 61(17): 177103. doi: 10.7498/aps.61.177103
    [7] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷. 物理学报, 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
    [8] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [9] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [10] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量. 物理学报, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [11] 蔡璐璐, 尹闻闻, 吴 飞. 均匀光纤Bragg光栅局部横向受力特性研究. 物理学报, 2008, 57(12): 7737-7746. doi: 10.7498/aps.57.7737
    [12] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [13] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [14] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态. 物理学报, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [15] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [16] 马松山, 徐 慧, 刘小良, 郭爱敏. DNA分子链电子结构特性研究. 物理学报, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [17] 刘小良, 徐 慧, 马松山, 宋招权, 邓超生. 准二维无序系统的电子结构. 物理学报, 2006, 55(5): 2492-2497. doi: 10.7498/aps.55.2492
    [18] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [19] 刘小良, 徐 慧, 马松山, 邓超生, 郭爱敏. DNA分子链的电子局域性质及电导的研究. 物理学报, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [20] 韩 鹏, 汪河洲. 一维无序扰动周期结构中局域长度的对称等价变换. 物理学报, 2005, 54(1): 338-342. doi: 10.7498/aps.54.338
计量
  • 文章访问数:  4785
  • PDF下载量:  650
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-14
  • 修回日期:  2010-01-12
  • 刊出日期:  2010-05-05

含单负特异材料一维无序扰动周期结构中的光子局域特性研究

  • 1. 华南师范大学量子信息技术重点实验室,广州 510006
    基金项目: 国家自然科学基金(批准号: 10504008)、教育部科学技术研究基金重点项目(批准号: 209091)资助的课题.

摘要: 采用传输矩阵法研究了电磁波在由单负特异材料组成的一维无序扰动周期结构中的Anderson局域(Anderson Localization)行为,分别讨论了色散和非色散两种模型.结果发现,在对应周期结构的通带位置,无序的引入对局域长度的影响较大,而在带隙位置,影响较小,几乎可以忽略.该性质与我们曾讨论的随机结构有较明显不同.导致这种局域性质的主要原因应为,光在单负材料组成的系统中的传输主要依赖于两种单负材料间的界面.在无序扰动结构中,该界面数相对于周期结构并没有减少,因此对光的传输性质影响较小,而随机结构中

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回