搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含单负特异材料一维无序扰动周期结构中的光子局域特性研究

刘冬梅 韩鹏

引用本文:
Citation:

含单负特异材料一维无序扰动周期结构中的光子局域特性研究

刘冬梅, 韩鹏

Wave localization in one-dimensional periodic-on-average disordered system composed of single-negative metamaterials

Liu Dong-Mei, Han Peng
PDF
导出引用
  • 采用传输矩阵法研究了电磁波在由单负特异材料组成的一维无序扰动周期结构中的Anderson局域(Anderson Localization)行为,分别讨论了色散和非色散两种模型.结果发现,在对应周期结构的通带位置,无序的引入对局域长度的影响较大,而在带隙位置,影响较小,几乎可以忽略.该性质与我们曾讨论的随机结构有较明显不同.导致这种局域性质的主要原因应为,光在单负材料组成的系统中的传输主要依赖于两种单负材料间的界面.在无序扰动结构中,该界面数相对于周期结构并没有减少,因此对光的传输性质影响较小,而随机结构中
    By using the transfer-matrix method,we study the Anderson localization behavior in one-dimensional periodic-on-average disordered system composed of two different single-negative(SNG) metamaterials. Non-dispersive and dipersive models have been studied respectively. It was found that the disorder has great effect on waves with frequency in the pass band of the corresponding periodic structure. However,inside the gap,the effect can be almost ignored. These features are different from those we ever found in the random single-negative system. The main reason of the difference should be the number of the interfaces between two kinds of single negative metamateirals,which should be the basic mechanism of the wave propagation in systems made of single negative metamaterials. In periodic-on-average disordered systems,the number of the interface is the same as that in periodic one. However,there is an obvious decrease in random systems,which will have a great effect on the ability of wave transport,leading to small localization length. In the case of a dispersive model,it has been proved that the randomness has no effect on the wave propagation with frequency at the center of the gap. Especially,this special point becomes a delocalization point when the ratio of effective optical thickness of two single negative materials equals one. The results facilitates further understanding of the wave transport mechanism in systems composed of metamaterials.
    • 基金项目: 国家自然科学基金(批准号: 10504008)、教育部科学技术研究基金重点项目(批准号: 209091)资助的课题.
    [1]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE T. Microw. Theory 47 2075

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Express 16 6860

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Pendry J B 2006 Science 312 1780

    [7]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [8]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [9]

    John S 1987 Phys. Rev. Lett. 58 2486

    [10]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [11]

    Wang Z D, Liu N H 2009 Acta Phys. Sin. 58 0559 (in Chinese) [王振德、 刘念华 2009 物理学报 58 0559]

    [12]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [13]

    Jiang H, Chen H, Li H, Zhang Y, Zi J 2004 Phys. Rev. E 69 066607

    [14]

    Chen Y H, Dong J W, Wang H Z 2006 Appl. Phys. Lett. 89 141101

    [15]

    Anderson P W 1958 Phys. Rev. 109 1492

    [16]

    Wiersma D S 1997 Nature 390 671

    [17]

    Storzer M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [18]

    Foret M, Courtens E, Vacher R, Suck J B 1996 Phys. Rev. Lett. 77 3831

    [19]

    Billy J 2008 Nature 453 891

    [20]

    Roati G 2008 Nature 453 895

    [21]

    Jahnke L, Kantelhardt J W, Berkovits R 2008 Phys. Rev. Lett. 101 175702

    [22]

    Sheng P 1990 Scattering and Localization of Classical Waves in Random Media (Singapore: World Scientific)

    [23]

    Ghulinyan M 2007 Phys. Rev. Lett. 99 063905

    [24]

    Sebbah P, Hu B, Klosner J M, Genack A Z 2006 Phys. Rev. Lett. 96 183902

    [25]

    Han P, Zheng C J 2008 Phys. Rev. E 77 041111

    [26]

    Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩 鹏、 汪河洲 2005 物理学报 54 338]

    [27]

    Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1520

    [28]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [29]

    Dong Y, Zhang X 2006 Phys. Lett. A 359 542

    [30]

    Asatryan IIA A, Botten L C, Byrne M A, Freilikher V D, Gredeskul S A 2007 Phys. Rev. Lett. 99 193902

    [31]

    Nascimento E M, Moura F A B F de, Lyra M L 2008 Opt.

    [32]

    Han P, Chan C T, Zhang Z Q 2008 Phys. Rev. B 77 115332

  • [1]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE T. Microw. Theory 47 2075

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Express 16 6860

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Pendry J B 2006 Science 312 1780

    [7]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [8]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [9]

    John S 1987 Phys. Rev. Lett. 58 2486

    [10]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [11]

    Wang Z D, Liu N H 2009 Acta Phys. Sin. 58 0559 (in Chinese) [王振德、 刘念华 2009 物理学报 58 0559]

    [12]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [13]

    Jiang H, Chen H, Li H, Zhang Y, Zi J 2004 Phys. Rev. E 69 066607

    [14]

    Chen Y H, Dong J W, Wang H Z 2006 Appl. Phys. Lett. 89 141101

    [15]

    Anderson P W 1958 Phys. Rev. 109 1492

    [16]

    Wiersma D S 1997 Nature 390 671

    [17]

    Storzer M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [18]

    Foret M, Courtens E, Vacher R, Suck J B 1996 Phys. Rev. Lett. 77 3831

    [19]

    Billy J 2008 Nature 453 891

    [20]

    Roati G 2008 Nature 453 895

    [21]

    Jahnke L, Kantelhardt J W, Berkovits R 2008 Phys. Rev. Lett. 101 175702

    [22]

    Sheng P 1990 Scattering and Localization of Classical Waves in Random Media (Singapore: World Scientific)

    [23]

    Ghulinyan M 2007 Phys. Rev. Lett. 99 063905

    [24]

    Sebbah P, Hu B, Klosner J M, Genack A Z 2006 Phys. Rev. Lett. 96 183902

    [25]

    Han P, Zheng C J 2008 Phys. Rev. E 77 041111

    [26]

    Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩 鹏、 汪河洲 2005 物理学报 54 338]

    [27]

    Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1520

    [28]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [29]

    Dong Y, Zhang X 2006 Phys. Lett. A 359 542

    [30]

    Asatryan IIA A, Botten L C, Byrne M A, Freilikher V D, Gredeskul S A 2007 Phys. Rev. Lett. 99 193902

    [31]

    Nascimento E M, Moura F A B F de, Lyra M L 2008 Opt.

    [32]

    Han P, Chan C T, Zhang Z Q 2008 Phys. Rev. B 77 115332

  • [1] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234302. doi: 10.7498/aps.72.20231423
    [2] 刘启沛, 张程贤, 薛正远. 强驱动单态-三重态量子比特的高保真单比特门. 物理学报, 2023, 72(20): 200302. doi: 10.7498/aps.72.20230906
    [3] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展. 物理学报, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [4] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [5] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [6] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验. 物理学报, 2022, 71(17): 170302. doi: 10.7498/aps.71.20220445
    [7] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [8] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [9] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [10] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华. 基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性. 物理学报, 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [11] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [12] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [13] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [14] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [15] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [16] 刘汝新, 董瑞新, 闫循领, 肖夏. 忆阻器单阻态下的记忆电容行为及多态特性. 物理学报, 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [17] 吴撼宇, 曾正中, 邱孟通, 张信军, 郭宁, 魏浩. 高功率单孔柱-孔汇聚传输结构的电磁粒子仿真. 物理学报, 2019, 68(17): 178401. doi: 10.7498/aps.68.20190535
    [18] 王飞, 魏兵. 含石墨烯分界面有耗分层介质的传播矩阵. 物理学报, 2019, 68(24): 244101. doi: 10.7498/aps.68.20190823
    [19] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [20] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应. 物理学报, 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
计量
  • 文章访问数:  5949
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-14
  • 修回日期:  2010-01-12
  • 刊出日期:  2010-05-05

/

返回文章
返回