搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多径衰落信道下混沌直扩通信的可破解性

白鹭 郭静波

引用本文:
Citation:

多径衰落信道下混沌直扩通信的可破解性

白鹭, 郭静波

Breakability of chaotic direct sequence spreading spectrum secure system under multi-path fading channel

Bai Lu, Guo Jing-Bo
PDF
导出引用
  • 本文在文献[1]的基础上,研究多径衰落信道条件下采用无先导卡尔曼滤波混沌拟合对混沌直扩通信的可破解性.由针对混沌直扩信号的无先导卡尔曼滤波混沌拟合的状态空间方程出发,分析了多径衰落信道对于无先导卡尔曼滤波混沌拟合过程中的跟踪误差的影响,得到了信息码状态估计的值域范围,从而提出了多径衰落信道下混沌直扩信号可被破解的充分条件定理.仿真结果表明,在满足充分条件下,混沌直扩信号无论是通过时不变信道还是时变信道,都可以被成功破解,并且具有良好的误码率性能.
    Blind demodulation (breaking) of chaotic direct sequence spread spectrum (CD3S) signals is a challenging and leading issue under multipath fading channel in the field of chaotic communication. Until now, there are neither equalization methods to remove the impact of the channel, nor the immediate breaking methods. Based on the existing study, the breakability of CD3S signals is analyzed under multipath fading channel by using unscented Kalman filter (UKF) chaotic fitting in this paper. Beginning with the state space equation for the CD3S signals in UKF chaotic fitting, the channel influence on the tracking error is analyzed in the process of UKF chaotic fitting, then the range of the message state estimation is derived, and finally a sufficient condition theorem is proposed for the CD3S signals to be broken. Simulation results show that CD3S signals can be broken successfully under the proposed condition with excellent performance of bit error rate (BER), no matter whether the channel characteristic is either time-invariant or time-variant.
    • 基金项目: 国家重点实验室项目(批准号:SKLD09M25)资助的课题.
    [1]

    Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477(in Chinese)[胡进峰、郭静波 2008 物理学报 57 1477]

    [2]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [3]

    Mou J, Tao C, Du G H 2003 Chin. Phys. 12 381

    [4]

    Li N, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李 农、李建芬 2008 物理学报 57 6093]

    [5]

    Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3283 (in Chinese) [孙 琳、姜德平 2006 物理学报 55 3283]

    [6]

    Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE Trans. Circuits Syst. II 40 626

    [7]

    Li J F, Li N 2002 Chin. Phys. 11 1124

    [8]

    Dedieu H, Ckennedy M P, Hasler M 1993 IEEE Trans. Circuits Syst. II 40 634

    [9]

    Zhang J S, Xiao X C, 2001 Acta Phys. Sin. 50 2121 (in Chinese) [张家树、肖先赐 2001 物理学报 50 2121]

    [10]

    Wang M J, Wang X Y, 2009 Acta Phys. Sin. 58 1467 (in Chinese) [王明军、王兴元 2009 物理学报 58 1467]

    [11]

    Zhou W J, Yu S M, 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 物理学报 58 113]

    [12]

    Yan S L 2005 Acta Phys. Sin. 54 2000 (in Chinese) [颜森林 2005 物理学报 54 2000]

    [13]

    Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231

    [14]

    Li C Y, Li X H, Deng F G, Zhou H Y 2008 Chin. Phys.B 17 2352

    [15]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys.Sin. 51 474 (in Chinese) [汪芙平、王赞基、郭静波 2002 物理学报 51 474]

    [16]

    Yang T, Yang L B, Yang C M 1998 Phys. Lett. A 247 105

    [17]

    Alvarez G, Montoya F, Romera M, Pastor G 2004 Chaos, Solitons and Fractal 21 783

    [18]

    Yang T, Yang B L, Yang C M 1998 IEEE Trans. Circuits Syst.I 45 1062

    [19]

    Parlitz U, Lakshmanan S 1994 Phys Lett. A 188 146

    [20]

    Heidari-Bateni G, McGillem C D 1994 IEEE Trans. Communications 42 1524

    [21]

    Zhou P 2007 Chin. Phys. 16 1263

    [22]

    Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597

    [23]

    Li Z, Han C Z 2002 Chin. Phys. 11 666

    [24]

    Li G H, Zhou S P, Xu D M 2004 Chin. Phys. 13 168

    [25]

    Tsatsanis M K, Proakis G B 1997 IEEE Trans. Signal Processing 45 1241

    [26]

    Hwang Y, Papadopoulos H C 2004 IEEE Trans. Signal Processing 52 2637

    [27]

    Zhang J S 2006 Chin. Phys. Lett. 23 3187

    [28]

    Zhu Z W, Leung H 2001 IEEE Trans. Circuits Syst.I 48 979

    [29]

    Zhu Z W, Leung H 2002 IEEE Trans. Circuits Syst.I 49 170

    [30]

    Vural C, Cetinel G 2010 Digital Signal Processing 20 201

    [31]

    Xie N, Leung H 2005 IEEE Trans. Neural Networks 16 709

    [32]

    Fang Y, Chow T W S 1999 IEEE Trans. Neural Networks 10 918

    [33]

    Kandepu R, Foss B, Imsland L 2008 J. Process Control 18 753

    [34]

    King P, Venkatesan R, Li C 2008 Proc IEEE Globecom 2008 Nov 30- Dec 4, 2008 p1

    [35]

    Amitay N 1992 IEEE Trans. Vehicular Technology 41 337

  • [1]

    Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477(in Chinese)[胡进峰、郭静波 2008 物理学报 57 1477]

    [2]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [3]

    Mou J, Tao C, Du G H 2003 Chin. Phys. 12 381

    [4]

    Li N, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李 农、李建芬 2008 物理学报 57 6093]

    [5]

    Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3283 (in Chinese) [孙 琳、姜德平 2006 物理学报 55 3283]

    [6]

    Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE Trans. Circuits Syst. II 40 626

    [7]

    Li J F, Li N 2002 Chin. Phys. 11 1124

    [8]

    Dedieu H, Ckennedy M P, Hasler M 1993 IEEE Trans. Circuits Syst. II 40 634

    [9]

    Zhang J S, Xiao X C, 2001 Acta Phys. Sin. 50 2121 (in Chinese) [张家树、肖先赐 2001 物理学报 50 2121]

    [10]

    Wang M J, Wang X Y, 2009 Acta Phys. Sin. 58 1467 (in Chinese) [王明军、王兴元 2009 物理学报 58 1467]

    [11]

    Zhou W J, Yu S M, 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 物理学报 58 113]

    [12]

    Yan S L 2005 Acta Phys. Sin. 54 2000 (in Chinese) [颜森林 2005 物理学报 54 2000]

    [13]

    Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231

    [14]

    Li C Y, Li X H, Deng F G, Zhou H Y 2008 Chin. Phys.B 17 2352

    [15]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys.Sin. 51 474 (in Chinese) [汪芙平、王赞基、郭静波 2002 物理学报 51 474]

    [16]

    Yang T, Yang L B, Yang C M 1998 Phys. Lett. A 247 105

    [17]

    Alvarez G, Montoya F, Romera M, Pastor G 2004 Chaos, Solitons and Fractal 21 783

    [18]

    Yang T, Yang B L, Yang C M 1998 IEEE Trans. Circuits Syst.I 45 1062

    [19]

    Parlitz U, Lakshmanan S 1994 Phys Lett. A 188 146

    [20]

    Heidari-Bateni G, McGillem C D 1994 IEEE Trans. Communications 42 1524

    [21]

    Zhou P 2007 Chin. Phys. 16 1263

    [22]

    Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597

    [23]

    Li Z, Han C Z 2002 Chin. Phys. 11 666

    [24]

    Li G H, Zhou S P, Xu D M 2004 Chin. Phys. 13 168

    [25]

    Tsatsanis M K, Proakis G B 1997 IEEE Trans. Signal Processing 45 1241

    [26]

    Hwang Y, Papadopoulos H C 2004 IEEE Trans. Signal Processing 52 2637

    [27]

    Zhang J S 2006 Chin. Phys. Lett. 23 3187

    [28]

    Zhu Z W, Leung H 2001 IEEE Trans. Circuits Syst.I 48 979

    [29]

    Zhu Z W, Leung H 2002 IEEE Trans. Circuits Syst.I 49 170

    [30]

    Vural C, Cetinel G 2010 Digital Signal Processing 20 201

    [31]

    Xie N, Leung H 2005 IEEE Trans. Neural Networks 16 709

    [32]

    Fang Y, Chow T W S 1999 IEEE Trans. Neural Networks 10 918

    [33]

    Kandepu R, Foss B, Imsland L 2008 J. Process Control 18 753

    [34]

    King P, Venkatesan R, Li C 2008 Proc IEEE Globecom 2008 Nov 30- Dec 4, 2008 p1

    [35]

    Amitay N 1992 IEEE Trans. Vehicular Technology 41 337

  • [1] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [2] 李雄杰, 周东华. 一种基于强跟踪滤波的混沌保密通信方法. 物理学报, 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [3] 王顺天, 吴正茂, 吴加贵, 周立, 夏光琼. 基于半导体环形激光器的高速双向双信道混沌保密通信. 物理学报, 2015, 64(15): 154205. doi: 10.7498/aps.64.154205
    [4] 王逸林, 马世龙, 梁国龙, 范展. 基于多径分集的啁啾扩频正交频分复用水声通信系统. 物理学报, 2014, 63(4): 044302. doi: 10.7498/aps.63.044302
    [5] 钟东洲, 邓涛, 郑国梁. 双信道偏振复用保密通信系统的完全混沌同步的操控性研究. 物理学报, 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [6] 赵艳梅, 夏光琼, 吴加贵, 吴正茂. 基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究. 物理学报, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [7] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [8] 唐良瑞, 樊冰, 亢中苗. 利用混沌信号幅值实现混沌同步. 物理学报, 2012, 61(8): 080508. doi: 10.7498/aps.61.080508
    [9] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [10] 盛峥. 扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用. 物理学报, 2011, 60(11): 119301. doi: 10.7498/aps.60.119301
    [11] 胡志辉, 冯久超. 基于UKF的多用户混沌通信. 物理学报, 2011, 60(7): 070505. doi: 10.7498/aps.60.070505
    [12] 侯奋飞, 杨宏. 多信道梳状滤波器信道间的相移补偿(已撤稿). 物理学报, 2010, 59(4): 2577-2581. doi: 10.7498/aps.59.2577
    [13] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [14] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [15] 范永全, 张家树. 基于集员估计的混沌通信窄带干扰抑制技术. 物理学报, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [16] 胡进峰, 郭静波. 一种破译混沌直接序列扩频保密通信的方法. 物理学报, 2008, 57(3): 1477-1484. doi: 10.7498/aps.57.1477
    [17] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [18] 赵海全, 张家树, 曾祥萍. 混沌通信系统中非线性信道的自适应神经Legendre正交多项式均衡. 物理学报, 2007, 56(4): 1975-1982. doi: 10.7498/aps.56.1975
    [19] 殷敬伟, 惠俊英, 王逸林, 惠 娟. M元混沌扩频多通道Pattern时延差编码水声通信. 物理学报, 2007, 56(10): 5915-5921. doi: 10.7498/aps.56.5915
    [20] 吴加贵, 吴正茂, 林晓东, 张 毅, 钟东洲, 夏光琼. 双信道光混沌通信系统的理论模型及性能研究. 物理学报, 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
计量
  • 文章访问数:  7083
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-15
  • 修回日期:  2010-10-08
  • 刊出日期:  2011-07-15

/

返回文章
返回