搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子晶体光纤中多抽运四波混频效应的新型光层组播技术

惠战强 张建国

引用本文:
Citation:

基于光子晶体光纤中多抽运四波混频效应的新型光层组播技术

惠战强, 张建国

All-optical multicasting based on multi-pumpfour-wave mixing in photonic crystal fiber

Hui Zhan-Qiang, Zhang Jian-Guo
PDF
导出引用
  • 光层组播是未来透明光子网络中一项重要的全光信号处理功能,提出并实验证实了一种基于色散平坦高非线性光子晶体光纤中多抽运四波混频效应的光层组播方法,将一束信号光与两束连续抽运光同时输入高非线性光子晶体光纤中,通过多抽运四波混频过程,产生四个携带该数据信息的闲频光,从而实现了单一信号的四信道光层组播功能,组播信道波长在35.2 nm范围可调谐,组播信道最大间距4.4 THz,最大转换效率-22 dB,最优Q因子为5.3,该方法的特点在于基于光纤中的四波混频效应工作,因而具有对调制格式和比特率透明的
    All-optical multicasting is a key technology of future transparent photonic network, and in this paper it is presented and experimentally demonstrated based on four-wave mixing (FWM) with multi-frequency pump in 100 m dispersion flattened highly nonlinear photon crystal fiber (HNL-PCF). A signal together with double orthogonal pumps is input into the PCF, and four idlers at new frequencies can be generated through degenerate multi-frequency pump FWM processes, which carry the same data information as the input signal and then a 4×10 Gbit/s wavelength multicasting has been obtained with a tunable operation wavelength range of 35.2 nm and total channel span of 4.4THz. The optimal conversion efficiency and the optimal Q factor are -22 dB and 5.3, respectively. The system is transparent to both bit rate and modulation format. The advantage of this scheme consists in the ability of bandwidth, and the multicasting channel scalable due to dispersion flattening of PCF is used. Furthermore, it is all optical fiber, compact and robust, which makes it more competitive as well as easily accessible for the uses in practical optical communication systems.
    • 基金项目: 中国科学院知识创新工程(批准号:KGCX2-YW-108)和"百人计划"项目资助的课题. #通讯联系人.Email:zqhui@opt.ac.cn
    [1]

    Pankaj R K 1999 IEEE/ACM Trans. Netw. 7 414

    [2]

    Wang W, Rau L G, Blumenthal D J 2005 IEEE J. Lightw. Technol. 23 211

    [3]

    George J, Rouskas N 2003 IEEE Network 17 60

    [4]

    Hideaki Furukawa, Ampalavanapillai 2007 IEEE Photon. Technol. Lett. 19 384

    [5]

    Xu L, Chi N, Yvind K 2004 Opt. Express 12 416

    [6]

    YAN W Z, Wang Z Y 2007 Chin. J. of Elec. 16 363

    [7]

    Contestabile G, Calabretta N 2006 IEEE Photon. Technol. Lett. 18 181

    [8]

    Yan N, Silveira T, Teixeira A 2007 IEEE Elec. Lett. 43 1731

    [9]

    Contestabile G, Calabretta N, Presi M 2005 IEEE Photon. Technol. Lett. 17 2652

    [10]

    Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 IEEE J. Lightw. Technol. 23 3331

    [11]

    Preetpaul Devgan, Renyong Tang, Grigoryan V S 2005 Conference on Lasers & Electro-Optics (CLEO) p291

    [12]

    Miao X R, Gao S M, Gao Y 2008 Acta Phys. Sin. 57 7699 (in Chinese) [苗向蕊、高士明、高 莹 2008 物理学报 57 7699]

    [13]

    Karasek M, Kanka J, Honzatko P, Vojtech J 2006 Proc. ICTON Tu.D1.7 p155

    [14]

    Kwan Lau, Wang S H, Xu L X 2008 IEEE Photon. Technol. Lett. 20 1730

    [15]

    Kwok C H, Lee S H, Chow K K 2006 OSA/CLEO CTuD4 p1

    [16]

    Fok M P 2007 IEEE. Photon. Technol. Lett. 19 1166

    [17]

    Arismar Cerqueira S Jr, Chavez J M Boggio 2007 Proceedings of IEEE IMOC p 155

    [18]

    Inoue K, Hasegawa T, Oda K, Toba H 1993 IEEE. Elec. Lett. 29 1708

    [19]

    Brès C S, Wiberg A O J 2009 IEEE. Photon. Technol. Lett. 21 1002

    [20]

    Petropoulos P, Monro T M, Belardi W, Frusawa K 2001 Opt. Lett. 26 1233

    [21]

    Jiang L H, Hou L T, 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、侯蓝田 2010 物理学报 59 1095]

    [22]

    Thompson J R,Roy R 1991 Phys. Rev.A 43 4987

    [23]

    Milton M J T 1992 IEEE J. Quantum Electron. 28 739

    [24]

    Liu X, Zhang H, Zhang M 2002 Opt. Express 10 83

    [25]

    Liu X M 2008 Phys. Rev.A 77 043818

    [26]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev.A 72 013811

    [27]

    Batagelj B 2000 In Proceedings of ICTON'2000 We.B.2 p179

    [28]

    Mikroulis S, Bogris A, Roditi E 2004 IEEE J Lightw. Tech. 22 2743

  • [1]

    Pankaj R K 1999 IEEE/ACM Trans. Netw. 7 414

    [2]

    Wang W, Rau L G, Blumenthal D J 2005 IEEE J. Lightw. Technol. 23 211

    [3]

    George J, Rouskas N 2003 IEEE Network 17 60

    [4]

    Hideaki Furukawa, Ampalavanapillai 2007 IEEE Photon. Technol. Lett. 19 384

    [5]

    Xu L, Chi N, Yvind K 2004 Opt. Express 12 416

    [6]

    YAN W Z, Wang Z Y 2007 Chin. J. of Elec. 16 363

    [7]

    Contestabile G, Calabretta N 2006 IEEE Photon. Technol. Lett. 18 181

    [8]

    Yan N, Silveira T, Teixeira A 2007 IEEE Elec. Lett. 43 1731

    [9]

    Contestabile G, Calabretta N, Presi M 2005 IEEE Photon. Technol. Lett. 17 2652

    [10]

    Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 IEEE J. Lightw. Technol. 23 3331

    [11]

    Preetpaul Devgan, Renyong Tang, Grigoryan V S 2005 Conference on Lasers & Electro-Optics (CLEO) p291

    [12]

    Miao X R, Gao S M, Gao Y 2008 Acta Phys. Sin. 57 7699 (in Chinese) [苗向蕊、高士明、高 莹 2008 物理学报 57 7699]

    [13]

    Karasek M, Kanka J, Honzatko P, Vojtech J 2006 Proc. ICTON Tu.D1.7 p155

    [14]

    Kwan Lau, Wang S H, Xu L X 2008 IEEE Photon. Technol. Lett. 20 1730

    [15]

    Kwok C H, Lee S H, Chow K K 2006 OSA/CLEO CTuD4 p1

    [16]

    Fok M P 2007 IEEE. Photon. Technol. Lett. 19 1166

    [17]

    Arismar Cerqueira S Jr, Chavez J M Boggio 2007 Proceedings of IEEE IMOC p 155

    [18]

    Inoue K, Hasegawa T, Oda K, Toba H 1993 IEEE. Elec. Lett. 29 1708

    [19]

    Brès C S, Wiberg A O J 2009 IEEE. Photon. Technol. Lett. 21 1002

    [20]

    Petropoulos P, Monro T M, Belardi W, Frusawa K 2001 Opt. Lett. 26 1233

    [21]

    Jiang L H, Hou L T, 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、侯蓝田 2010 物理学报 59 1095]

    [22]

    Thompson J R,Roy R 1991 Phys. Rev.A 43 4987

    [23]

    Milton M J T 1992 IEEE J. Quantum Electron. 28 739

    [24]

    Liu X, Zhang H, Zhang M 2002 Opt. Express 10 83

    [25]

    Liu X M 2008 Phys. Rev.A 77 043818

    [26]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev.A 72 013811

    [27]

    Batagelj B 2000 In Proceedings of ICTON'2000 We.B.2 p179

    [28]

    Mikroulis S, Bogris A, Roditi E 2004 IEEE J Lightw. Tech. 22 2743

  • [1] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [2] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [3] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [4] 李建设, 李曙光, 赵原源, 韩颖, 陈海良, 韩晓明, 周桂耀. 在远离光子晶体光纤零色散波长的正常色散区入射飞秒脉冲产生四波混频及孤子效应的实验研究. 物理学报, 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [5] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [6] 王威彬, 杨华, 唐平华, 韩芳. 光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究. 物理学报, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [7] 惠战强, 张建国. 基于光子晶体光纤中双抽运四波混频效应的非归零到归零码型转换实验研究. 物理学报, 2013, 62(8): 084209. doi: 10.7498/aps.62.084209
    [8] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [9] 惠战强, 张建国. 基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换. 物理学报, 2012, 61(1): 014217. doi: 10.7498/aps.61.014217
    [10] 赵兴涛, 郑义, 刘晓旭, 刘兆伦, 李曙光, 侯蓝田. 具有三个及四个零色散波长光子晶体光纤的仿真研究 . 物理学报, 2012, 61(19): 194210. doi: 10.7498/aps.61.194210
    [11] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [12] 赵兴涛, 刘晓旭, 郑义, 韩颖, 周桂耀, 李曙光, 侯蓝田. 微小空气孔传光的光子晶体光纤研究. 物理学报, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [13] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [14] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [15] 郭铁英, 娄淑琴, 李宏雷, 简水生. 光子晶体光纤拉制中工艺参数的控制. 物理学报, 2009, 58(9): 6308-6315. doi: 10.7498/aps.58.6308
    [16] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [17] 方晓惠, 柴路, 胡明列, 栗岩锋, 王清月. 七芯光子晶体光纤结构优化的数值分析. 物理学报, 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [18] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [20] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
计量
  • 文章访问数:  5740
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-13
  • 修回日期:  2010-09-09
  • 刊出日期:  2011-07-15

基于光子晶体光纤中多抽运四波混频效应的新型光层组播技术

  • 1. (1)中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119; (2)中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119;西安邮电学院电信系,西安 710061
    基金项目: 中国科学院知识创新工程(批准号:KGCX2-YW-108)和"百人计划"项目资助的课题. #通讯联系人.Email:zqhui@opt.ac.cn

摘要: 光层组播是未来透明光子网络中一项重要的全光信号处理功能,提出并实验证实了一种基于色散平坦高非线性光子晶体光纤中多抽运四波混频效应的光层组播方法,将一束信号光与两束连续抽运光同时输入高非线性光子晶体光纤中,通过多抽运四波混频过程,产生四个携带该数据信息的闲频光,从而实现了单一信号的四信道光层组播功能,组播信道波长在35.2 nm范围可调谐,组播信道最大间距4.4 THz,最大转换效率-22 dB,最优Q因子为5.3,该方法的特点在于基于光纤中的四波混频效应工作,因而具有对调制格式和比特率透明的

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回