搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对相干态在通过参量转换中的演化与量子化光涡态的实现

朱开成 李绍新 郑小娟 唐慧琴

引用本文:
Citation:

对相干态在通过参量转换中的演化与量子化光涡态的实现

朱开成, 李绍新, 郑小娟, 唐慧琴

Pair coherent state evolutions through parametric frequency conversion and the realization of quantized vortex states

Zhu Kai-Cheng, Li Shao-Xin, Zheng Xiao-Juan, Tang Hui-Qin
PDF
导出引用
  • 本文讨论了光学参量频率转换过程中对相干态的演化问题, 获得了对相干态时间演化的解析表达式及在位形空间的波函数, 发现通过适当调节系统元件及相互作用时间, 对相干态在位形空间中的波包能呈现出量子涡态特性, 并且与这样涡态相关的波函数具有修正Bessel-Gaussian形式的结构, 即非高斯型波函数. 在相干态表象下, 这一量子化涡态是两模湮没算符平方和的本征态. 这一讨论揭示了产生量子化涡态的另一可实现方案.
    The pair coherent state evolution during a parametric frequency conversion is analyzed. And the wavefunction of the evolving pair coherent state in configuration space is obtained. It is found that the state may become a modified Bessel-Gaussian vortex state with topological charge index q which is a new non-Gaussian state. In coherent state representation such a modified Bessel-Gaussian vortex state is an eigenstate of sum of squared two-mode annihilation operators a2 + b2. The result obtained in this paper provides a new scheme for generating quantized vortex states in experiment with currently available technology.
    [1]

    Braunstein S L, Pati A K 2003 Quantum Information with Continuous Variables (Kluwer Academic, Dordrecht)

    [2]

    Braunstein S L, von Loock P 2005 Rev. Mod. Phys. 77 513

    [3]

    Bhaumik D, Bhaumik K, Dutta-Roy B 1976 J. Phys. A: Math. Gen. 9 1507

    [4]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [5]

    Agarwal G S 1988 J. Opt. Soc. Am. B 5 1940

    [6]

    Prakash G S, Agarwal G S 1995 Phys. Rev. A 52 2335

    [7]

    Gou S C, Steinbach J, Knight P L 1996 Phys. Rev. A 54 R1014

    [8]

    Gilchrist A, Munro W J 2000 J. Opt. B: Quantum Semiclass. Opt. 2 47

    [9]

    Meng X G, Wang J S, Fan H Y 2007 Phys. Lett. A 363 12

    [10]

    Gabris A, Agarwal G S 2007 Int. J. Quant. Inf. 5 17

    [11]

    Meng X G Wang J S 2007 Acta Phys. Sin. 56 4578 ( in Chinese) [孟祥国, 王继锁 2007 物理学报 56 4578]

    [12]

    Meng X G, Wang J S, Liang B L, Li H Q 2008 Chin. Phys. B 17 1791

    [13]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [14]

    Chen Z H Liao C G Luo C L 2010 Acta Phys. Sin. 59 6152(in Chinese)[陈子翃, 廖长庚, 罗成立 2010 物理学报 59 6152]

    [15]

    Gerry C C, Mimih J, Birrittella R 2011 Phys. Rev. A 84 023810

    [16]

    Agarwal G S, Puri R R, Singh R P 1997 Phys. Rev. A 56 4207

    [17]

    Agarwal G S, Banerji J 2006 J. Phys. A 39 11503

    [18]

    Bandyopadhyay A, Singh R P 2011 Opt. Commun. 284 256

    [19]

    Bandyopadhyay A, Prabhakar S, Singh R P 2011 Phys. Lett. A 375 1926

    [20]

    Agarwal G S, Biswas A 2005 New J. of Phys. 7 211

    [21]

    Agarwal G S 2011 New J. of Phys. 13 073008

    [22]

    Molina-Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601

    [23]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901

    [24]

    Allen L, Barnett S M, Padgett M J 2003 Optical Angular Momentum (Institute of Physics, Bristol)

    [25]

    Eisert J, Scheel S, Plenio M B 2002 Phys. Rev. Lett. 89 137903

    [26]

    Fiurasek J 2002 Phys. Rev. Lett. 89 137904

    [27]

    Giedke G, Cirac J I 2002 Phys. Rev. A 66 032316

    [28]

    Louisell W H, Yariv A, Semjonov A E 1961 Phys. Rev. 124 1646

    [29]

    Tucker J, Walls D F 1969 Ann. Phys. NY 52 1

    [30]

    Perina J 1987 Quantum Statistics of Linear and Nolinear Optical Phenomena (D. Reidel, Dordrecht-Boston) p217

    [31]

    Dodonov A V, Dodonov V V, Mizrahi S S 2005 J. Phys. A: Math. Gen. 38 683

    [32]

    Korenev B G 2002 Bessel functions and their applications (Taylor & Francis) p23

  • [1]

    Braunstein S L, Pati A K 2003 Quantum Information with Continuous Variables (Kluwer Academic, Dordrecht)

    [2]

    Braunstein S L, von Loock P 2005 Rev. Mod. Phys. 77 513

    [3]

    Bhaumik D, Bhaumik K, Dutta-Roy B 1976 J. Phys. A: Math. Gen. 9 1507

    [4]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [5]

    Agarwal G S 1988 J. Opt. Soc. Am. B 5 1940

    [6]

    Prakash G S, Agarwal G S 1995 Phys. Rev. A 52 2335

    [7]

    Gou S C, Steinbach J, Knight P L 1996 Phys. Rev. A 54 R1014

    [8]

    Gilchrist A, Munro W J 2000 J. Opt. B: Quantum Semiclass. Opt. 2 47

    [9]

    Meng X G, Wang J S, Fan H Y 2007 Phys. Lett. A 363 12

    [10]

    Gabris A, Agarwal G S 2007 Int. J. Quant. Inf. 5 17

    [11]

    Meng X G Wang J S 2007 Acta Phys. Sin. 56 4578 ( in Chinese) [孟祥国, 王继锁 2007 物理学报 56 4578]

    [12]

    Meng X G, Wang J S, Liang B L, Li H Q 2008 Chin. Phys. B 17 1791

    [13]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [14]

    Chen Z H Liao C G Luo C L 2010 Acta Phys. Sin. 59 6152(in Chinese)[陈子翃, 廖长庚, 罗成立 2010 物理学报 59 6152]

    [15]

    Gerry C C, Mimih J, Birrittella R 2011 Phys. Rev. A 84 023810

    [16]

    Agarwal G S, Puri R R, Singh R P 1997 Phys. Rev. A 56 4207

    [17]

    Agarwal G S, Banerji J 2006 J. Phys. A 39 11503

    [18]

    Bandyopadhyay A, Singh R P 2011 Opt. Commun. 284 256

    [19]

    Bandyopadhyay A, Prabhakar S, Singh R P 2011 Phys. Lett. A 375 1926

    [20]

    Agarwal G S, Biswas A 2005 New J. of Phys. 7 211

    [21]

    Agarwal G S 2011 New J. of Phys. 13 073008

    [22]

    Molina-Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601

    [23]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901

    [24]

    Allen L, Barnett S M, Padgett M J 2003 Optical Angular Momentum (Institute of Physics, Bristol)

    [25]

    Eisert J, Scheel S, Plenio M B 2002 Phys. Rev. Lett. 89 137903

    [26]

    Fiurasek J 2002 Phys. Rev. Lett. 89 137904

    [27]

    Giedke G, Cirac J I 2002 Phys. Rev. A 66 032316

    [28]

    Louisell W H, Yariv A, Semjonov A E 1961 Phys. Rev. 124 1646

    [29]

    Tucker J, Walls D F 1969 Ann. Phys. NY 52 1

    [30]

    Perina J 1987 Quantum Statistics of Linear and Nolinear Optical Phenomena (D. Reidel, Dordrecht-Boston) p217

    [31]

    Dodonov A V, Dodonov V V, Mizrahi S S 2005 J. Phys. A: Math. Gen. 38 683

    [32]

    Korenev B G 2002 Bessel functions and their applications (Taylor & Francis) p23

  • [1] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [2] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [3] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [4] 李晓亮, 陈宪章, 刘郴荣, 黄亮. 复杂势场量子弹球中疤痕态的量子化条件. 物理学报, 2020, 69(8): 080506. doi: 10.7498/aps.69.20200360
    [5] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [6] 任益充, 王书, 饶瑞中, 苗锡奎. 大气闪烁对纠缠相干态量子干涉雷达影响机理. 物理学报, 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [7] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [8] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [9] 刘建辉, 柳强, 巩马理. 光参量过程中的逆转换问题. 物理学报, 2011, 60(2): 024215. doi: 10.7498/aps.60.024215
    [10] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [11] 陈子翃, 廖长庚, 罗成立. Λ型三能级原子与对相干态光场共振作用中的非经典性质. 物理学报, 2010, 59(9): 6152-6158. doi: 10.7498/aps.59.6152
    [12] 李文博, 李宓善. 类氢原子的相干态. 物理学报, 2008, 57(7): 3973-3977. doi: 10.7498/aps.57.3973
    [13] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [14] 孟祥国, 王继锁. 有限维奇偶对相干态的非经典性质. 物理学报, 2007, 56(8): 4578-4584. doi: 10.7498/aps.56.4578
    [15] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [16] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [17] 路洪, 彭金生. SU(1,1)相干态光场的统计特性及其对原子动力学行为的影响. 物理学报, 1994, 43(11): 1787-1794. doi: 10.7498/aps.43.1787
    [18] 许伯威, 曾祺. 氢原子相干态. 物理学报, 1991, 40(8): 1212-1216. doi: 10.7498/aps.40.1212
    [19] 黄洪斌. 半导体中电子-空穴对的相干态、复合辐射和噪声压缩. 物理学报, 1989, 38(12): 1958-1967. doi: 10.7498/aps.38.1958
    [20] 赵冷柱. 量子化极限情况下MOS反型层二维电子气定域态电子电导率σxx的低频效应. 物理学报, 1987, 36(4): 411-418. doi: 10.7498/aps.36.411
计量
  • 文章访问数:  6646
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-27
  • 修回日期:  2012-03-01

/

返回文章
返回