搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维超混沌映射拓扑马蹄寻找算法及应用

李清都 唐宋

引用本文:
Citation:

三维超混沌映射拓扑马蹄寻找算法及应用

李清都, 唐宋

Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application

Li Qing-Du, Tang Song
PDF
导出引用
  • 拓扑马蹄理论是严格研究混沌的重要理论,然而却很少用在超混沌的研究中. 主要原因是超混沌系统不仅相空间维数比普通混沌高,而且存在的拉伸方向数也较多, 导致拓扑马蹄的寻找难度很大.为此,本文针对三维超混沌映射,提出一种实用的拓扑马蹄寻找算法. 超混沌系统通常有较大的负Lyapunov指数,其吸引子会靠向某一曲面.基于这种特性, 本文首先沿着系统收缩方向进行降维,得出二维平面投影系统;接着在新系统中搜索二维拉伸的投影马蹄; 最后利用投影马蹄升维构造出原三维系统拓扑马蹄.为了验证算法的有效性, 本文以经典Lorenz超混沌系统和著名Saito超混沌电路为例,利用数值计算, 在它们的Poincare映射中找出了具有二维拉伸的三维拓扑马蹄.
    Topological horseshoe theory is fundamental for studying chaos rigorously, which, however, has rarely applied to hyperchaos. The reason is that it is too hard to find a topological horseshoe in a hyperchaotic system, due to the high dimension of the system and the multiple expansion directions in the state space. Therefore, in this paper a practical algorithm for three-dimensional (3D) hyperchaotic maps is proposed. Usually, a hyperchaotic system has a large negative Lyapunov exponent, its attractor is often contracted closely to a certain surface. Based on this feature, the algorithm first deducts the dimension along the direction of contraction to obtain a 2D projective system; then it detects a projective horseshoe with 2D expansion; finally, it constructs a 3D horseshoe for the original system. In order to verify the validity of the algorithm, it is applied to the classic hyperchaotic Lorenz system and the famous Saito hyperchaotic circuit, and their horseshoes with 2D expansion are successfully found from the Poincaré mapping.
    • 基金项目: 国家自然科学基金(批准号: 10972082, 61104150)、 重庆市科委基金(批准号: cstcjjA40044) 和重庆邮电大学博士启动金(批准号: A2009-12)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972082, 61104150), the Natural Science Foundation Project of Chongqing (Grant No. cstcjjA40044), and the Doctoral Fund of CQUPT (Grant No. A2009-12).
    [1]

    Rossler O 1979 Physics Letters A 71 155

    [2]

    Zheng J 2011 Computers & Mathematics with Applications 61 2000

    [3]

    Yu H, Cai G, Li Y 2012 Nonlinear Dynamics 67 2171

    [4]

    Sheikhan M, Shahnazi R, Garoucy S 2011 Neural Computing & Applications 20 1

    [5]

    Vaidyanathan S, Sampath S 2012 Advances in Computer Science and Information Technology. Computer Science and Engineering 85 257

    [6]

    Uchida A, Amano K, Inoue M 2008 Nature Photonics 2 728

    [7]

    Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3288 (in Chinese) [孙琳, 姜德平 2006 物理学报 55 3283]

    [8]

    Wang J, Jiang G P 2011 Acta Phys. Sin. 60 60503 (in Chinese) [王晶, 蒋国平 2011 物理学报 60 60503]

    [9]

    Kennedy J, Kocak S, Yorke J A 2001 The American Mathematical Monthly 108 411

    [10]

    Kennedy J, Yorke J A 2001 Transactions of the American Mathematical Society 353 2513

    [11]

    Yang X S 2004 Chaos, Solitons & Fractals 20 1149

    [12]

    Szymczak A 1996 Topology 35 287

    [13]

    Plumecoq J, Lefranc M 2000 Physica D: Nonlinear Phenomena 144 231

    [14]

    Zgliczyński P, Gidea M 2004 Journal of Differential Equations 202 32

    [15]

    Li Q, Yang X S 2006 Journal of Physics a-Mathematical and General 39 9139

    [16]

    Yang F, Li Q, Zhou P 2007 International Journal of Bifurcation and Chaos 17 4205

    [17]

    Li Q, Yang X S 2007 Discrete Dynamics in Nature and Society 2007 16239

    [18]

    Li Q 2008 Physics Letters A 372 2989

    [19]

    Li Q, Yang X S 2008 International Journal of Circuit Theory and Applications 36 19

    [20]

    Li Q, Yang X S, Chen S 2011 International Journal of Bifurcation and Chaos 21 1719

    [21]

    Yang X S 2009 International Journal of Bifurcation and Chaos 19 1127

    [22]

    Yang X S, Li H, Huang Y 2005 Journal of Physics A: Mathematical and General 38 4175

    [23]

    Li Q, Yang X S 2010 International Journal of Bifurcation and Chaos 20 467

    [24]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元, 王明军 2007 物理学报 56 5136]

    [25]

    Saito T 1990 Circuits and Systems, IEEE Transactions on 37 399

  • [1]

    Rossler O 1979 Physics Letters A 71 155

    [2]

    Zheng J 2011 Computers & Mathematics with Applications 61 2000

    [3]

    Yu H, Cai G, Li Y 2012 Nonlinear Dynamics 67 2171

    [4]

    Sheikhan M, Shahnazi R, Garoucy S 2011 Neural Computing & Applications 20 1

    [5]

    Vaidyanathan S, Sampath S 2012 Advances in Computer Science and Information Technology. Computer Science and Engineering 85 257

    [6]

    Uchida A, Amano K, Inoue M 2008 Nature Photonics 2 728

    [7]

    Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3288 (in Chinese) [孙琳, 姜德平 2006 物理学报 55 3283]

    [8]

    Wang J, Jiang G P 2011 Acta Phys. Sin. 60 60503 (in Chinese) [王晶, 蒋国平 2011 物理学报 60 60503]

    [9]

    Kennedy J, Kocak S, Yorke J A 2001 The American Mathematical Monthly 108 411

    [10]

    Kennedy J, Yorke J A 2001 Transactions of the American Mathematical Society 353 2513

    [11]

    Yang X S 2004 Chaos, Solitons & Fractals 20 1149

    [12]

    Szymczak A 1996 Topology 35 287

    [13]

    Plumecoq J, Lefranc M 2000 Physica D: Nonlinear Phenomena 144 231

    [14]

    Zgliczyński P, Gidea M 2004 Journal of Differential Equations 202 32

    [15]

    Li Q, Yang X S 2006 Journal of Physics a-Mathematical and General 39 9139

    [16]

    Yang F, Li Q, Zhou P 2007 International Journal of Bifurcation and Chaos 17 4205

    [17]

    Li Q, Yang X S 2007 Discrete Dynamics in Nature and Society 2007 16239

    [18]

    Li Q 2008 Physics Letters A 372 2989

    [19]

    Li Q, Yang X S 2008 International Journal of Circuit Theory and Applications 36 19

    [20]

    Li Q, Yang X S, Chen S 2011 International Journal of Bifurcation and Chaos 21 1719

    [21]

    Yang X S 2009 International Journal of Bifurcation and Chaos 19 1127

    [22]

    Yang X S, Li H, Huang Y 2005 Journal of Physics A: Mathematical and General 38 4175

    [23]

    Li Q, Yang X S 2010 International Journal of Bifurcation and Chaos 20 467

    [24]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元, 王明军 2007 物理学报 56 5136]

    [25]

    Saito T 1990 Circuits and Systems, IEEE Transactions on 37 399

  • [1] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [2] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [3] 马军, 吴信谊, 秦会欣. 非连续的线性耦合方法实现超混沌系统的同步. 物理学报, 2013, 62(17): 170502. doi: 10.7498/aps.62.170502
    [4] 朱从旭, 孙克辉. 对一类超混沌图像加密算法的密码分析与改进. 物理学报, 2012, 61(12): 120503. doi: 10.7498/aps.61.120503
    [5] 王静, 蒋国平. 一种超混沌图像加密算法的安全性分析及其改进. 物理学报, 2011, 60(6): 060503. doi: 10.7498/aps.60.060503
    [6] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [7] 贾红艳, 陈增强, 叶菲. 一个三维四翼自治混沌系统的拓扑马蹄分析. 物理学报, 2011, 60(1): 010203. doi: 10.7498/aps.60.010203
    [8] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [9] 李亚, 张正明, 陶志杰. 一个超混沌六阶蔡氏电路及其硬件实现. 物理学报, 2009, 58(10): 6818-6822. doi: 10.7498/aps.58.6818
    [10] 贾红艳, 陈增强, 袁著祉. 一个大范围超混沌系统的生成和电路实现. 物理学报, 2009, 58(7): 4469-4476. doi: 10.7498/aps.58.4469
    [11] 王兴元, 孟娟. 基于Takagi-Sugeno模糊模型的超混沌系统自适应投影同步及参数辨识. 物理学报, 2009, 58(6): 3780-3787. doi: 10.7498/aps.58.3780
    [12] 胡建兵, 韩焱, 赵灵冬. 自适应同步参数未知的异结构分数阶超混沌系统. 物理学报, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [13] 刘明华, 冯久超. 一个新的超混沌系统. 物理学报, 2009, 58(7): 4457-4462. doi: 10.7498/aps.58.4457
    [14] 仓诗建, 陈增强, 袁著祉. 一个新四维非自治超混沌系统的分析与电路实现. 物理学报, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [15] 王兴元, 王明军. 超混沌Lorenz系统. 物理学报, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [16] 孙 琳, 姜德平. 驱动函数切换调制实现超混沌数字保密通信. 物理学报, 2006, 55(7): 3283-3288. doi: 10.7498/aps.55.3283
    [17] 马 军, 廖高华, 莫晓华, 李维学, 张平伟. 超混沌系统的间歇同步与控制. 物理学报, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [18] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [19] 岳丽娟, 陈艳艳, 彭建华. 用系统变量比例脉冲方法控制超混沌的电路实验研究. 物理学报, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
    [20] 王铁邦, 覃团发, 陈光旨. 超混沌系统的耦合同步. 物理学报, 2001, 50(10): 1851-1855. doi: 10.7498/aps.50.1851
计量
  • 文章访问数:  4773
  • PDF下载量:  1104
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-15
  • 修回日期:  2012-08-21
  • 刊出日期:  2013-01-05

三维超混沌映射拓扑马蹄寻找算法及应用

  • 1. 重庆邮电大学工业物联网与网络化控制教育部重点实验室, 重庆 400065;
  • 2. 重庆邮电大学非线性系统研究所, 重庆 400065
    基金项目: 国家自然科学基金(批准号: 10972082, 61104150)、 重庆市科委基金(批准号: cstcjjA40044) 和重庆邮电大学博士启动金(批准号: A2009-12)资助的课题.

摘要: 拓扑马蹄理论是严格研究混沌的重要理论,然而却很少用在超混沌的研究中. 主要原因是超混沌系统不仅相空间维数比普通混沌高,而且存在的拉伸方向数也较多, 导致拓扑马蹄的寻找难度很大.为此,本文针对三维超混沌映射,提出一种实用的拓扑马蹄寻找算法. 超混沌系统通常有较大的负Lyapunov指数,其吸引子会靠向某一曲面.基于这种特性, 本文首先沿着系统收缩方向进行降维,得出二维平面投影系统;接着在新系统中搜索二维拉伸的投影马蹄; 最后利用投影马蹄升维构造出原三维系统拓扑马蹄.为了验证算法的有效性, 本文以经典Lorenz超混沌系统和著名Saito超混沌电路为例,利用数值计算, 在它们的Poincare映射中找出了具有二维拉伸的三维拓扑马蹄.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回