搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快波模式转换效率的理论分析和数值模拟

卢凌峰 张新军 赵燕平 秦成明

引用本文:
Citation:

快波模式转换效率的理论分析和数值模拟

卢凌峰, 张新军, 赵燕平, 秦成明

Theoretical analysis and numerical calculation of mode conversion efficiency of fast wave

Lu Ling, Zhang Xin-Jun, Zhao Yan-Ping, Qin Cheng-Ming
PDF
导出引用
  • 利用相位积分法, 在传统的布登模型基础上, 考虑了高场侧截止层的影响, 构建了三体模型, 求出了快波通过单一衰减层的传输系数、反射系数和模式转换系数. 在双离子情况下, 模拟的结果与Kazakov等人的结果相符合. 针对EAST实验, 将双离子模型推广至三离子模型, 分析了不同相位、少子浓度、频率和纵场强度对快波模式转换效率的影响, 为未来离子回旋加热实验提供参考.
    By considering the effect of high-field-side cutoff, the conventional Budden model has been extended to Triplet model. In this model, the reflection coefficient, transmission coefficient and mode conversion (MC) coefficient of the fast wave for a single evanescence region can be derived through using phase-integral method. Furthermore, numerical calculation of MC coefficient for double-ion species and three-ion species have been done. In the case of double ions, the result is consistent with Kazakov's work. In addition, as an example of three ions plasma, (H, 3He)D plasma in tokamak EAST, simulations of the dependence of the MC efficiency on the magnetic field, microwave frequency and minority concentration for different antenna phasings are carried out. The results show how to choose proper phasing to reach an optimum MC efficiency. This result may provide a reference to improve ICRF heating efficiency.
    • 基金项目: 国家磁约束核聚变能研究专项(批准号: 2010GB110000)、国家自然科学基金 (批准号: 11105179, 11075182)和中国科学院知识创新工程重要方向性项目(批准号: Y05FCQ1126)资助的课题.
    • Funds: Project supported by the National Special Fund for Magnetically Confined Nuclear Fusion Energy (Grant No. 2010GB110000), the National Natural Science Foundation of China (Grant Nos. 11105179, 11075182), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. Y05FCQ1126).
    [1]

    Shi B R 1999 Magnetic Confinement Fusion Principles and Practice (1st Edn.) (Beijing: Atomic Energy Press) p198 (in Chinese) [石秉仁 1999 磁约束聚变原理与实践 1 st (北京: 原子能出版社) p198]

    [2]

    Perkins F W 1977 Nucl. Fusion 17 1197

    [3]

    Shen X M, Wang Z S, Shao Y G, Xue D Y, Ding J Y, Xu D Z, Wu C Z, Deng X, Wang J, Wang Y M, Li Y Y, HT-6M team 1995 Acta Phys. Sin. 44 1442 (in Chinese) [沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, HT-6M实验小组 1995 物理学报 44 1442]

    [4]

    Lin Y, Wukitch S J, Bonoli P T, Marmar E, Mossessian D, Nelson-Melby E, Phillips P, Porkolab M, Schilling G, Wolfe S, Wright J 2003 Plasma Phys. Control. Fusion 45 1013

    [5]

    Majeski R, Rogers J H, Batha S H, Budny R, Fredrickson E, Grek B, Hill K, Hosea J C, LeBlanc B, Levinton F, Murakami M, Phillips C K, Ramsey A T, Schilling G, Taylor G, Wilson J R, Zarnstorff M C 1996 Phys. Rev. Lett. 76 764

    [6]

    Lin Y, Rice J E, Wukitch S J, Reinke M L, Greenwald M J, Hubbard A E, Marmar E S, Podpaly Y, Porkolab M, Tsujii N, the Alcator C-Mod team 2011 Nucl. Fusion 51 063002

    [7]

    Li X L, Wan B N, Zhong G Q, Hu L Q, Lin S Y, Zhang X J, Zang Q 2011 Chin. Phys. Lett. 28 105202

    [8]

    Stix T H 1992 Waves in Plasmas (1st Edn.) (New York: American Institute of Physics) p348

    [9]

    Fuchs V, Ram A K, Schultz S D, Bers A, Lashmore-Davies C N 1995 Phys. Plasmas 2 1637

    [10]

    Kazakov Ye O, Pavlenko I V, Weyssow B, Girka I O 2008 Ukr. J. Phys. 53 442

    [11]

    Kazakov Ye O, Pavlenko I V, Eester D Van, Weyssow B, Girka I O 2010 Plasma Phys. Control. Fusion 52 115006

    [12]

    Swanson D G 2003 Plasma Waves (2nd Edn.) (London: The institute of Physics) p5

    [13]

    Heading J 1962 An Introduction to Phase Integral Methods (London: methuen) p40

    [14]

    Abramowitz M, Stegun I A 1972 Handbook of Mathematical Functions (9th Edn.) (New York: Dover) p256

    [15]

    Chiu S C, Mayberry M J, Bard W D 1990 Nucl. Fusion 30 2551

    [16]

    Qin C M, Zhang X J, Zhao Y P 2012 24th IAEA Fusion Energy Conference San Diego, October 8-13, 2012 EX/P6-25

  • [1]

    Shi B R 1999 Magnetic Confinement Fusion Principles and Practice (1st Edn.) (Beijing: Atomic Energy Press) p198 (in Chinese) [石秉仁 1999 磁约束聚变原理与实践 1 st (北京: 原子能出版社) p198]

    [2]

    Perkins F W 1977 Nucl. Fusion 17 1197

    [3]

    Shen X M, Wang Z S, Shao Y G, Xue D Y, Ding J Y, Xu D Z, Wu C Z, Deng X, Wang J, Wang Y M, Li Y Y, HT-6M team 1995 Acta Phys. Sin. 44 1442 (in Chinese) [沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, HT-6M实验小组 1995 物理学报 44 1442]

    [4]

    Lin Y, Wukitch S J, Bonoli P T, Marmar E, Mossessian D, Nelson-Melby E, Phillips P, Porkolab M, Schilling G, Wolfe S, Wright J 2003 Plasma Phys. Control. Fusion 45 1013

    [5]

    Majeski R, Rogers J H, Batha S H, Budny R, Fredrickson E, Grek B, Hill K, Hosea J C, LeBlanc B, Levinton F, Murakami M, Phillips C K, Ramsey A T, Schilling G, Taylor G, Wilson J R, Zarnstorff M C 1996 Phys. Rev. Lett. 76 764

    [6]

    Lin Y, Rice J E, Wukitch S J, Reinke M L, Greenwald M J, Hubbard A E, Marmar E S, Podpaly Y, Porkolab M, Tsujii N, the Alcator C-Mod team 2011 Nucl. Fusion 51 063002

    [7]

    Li X L, Wan B N, Zhong G Q, Hu L Q, Lin S Y, Zhang X J, Zang Q 2011 Chin. Phys. Lett. 28 105202

    [8]

    Stix T H 1992 Waves in Plasmas (1st Edn.) (New York: American Institute of Physics) p348

    [9]

    Fuchs V, Ram A K, Schultz S D, Bers A, Lashmore-Davies C N 1995 Phys. Plasmas 2 1637

    [10]

    Kazakov Ye O, Pavlenko I V, Weyssow B, Girka I O 2008 Ukr. J. Phys. 53 442

    [11]

    Kazakov Ye O, Pavlenko I V, Eester D Van, Weyssow B, Girka I O 2010 Plasma Phys. Control. Fusion 52 115006

    [12]

    Swanson D G 2003 Plasma Waves (2nd Edn.) (London: The institute of Physics) p5

    [13]

    Heading J 1962 An Introduction to Phase Integral Methods (London: methuen) p40

    [14]

    Abramowitz M, Stegun I A 1972 Handbook of Mathematical Functions (9th Edn.) (New York: Dover) p256

    [15]

    Chiu S C, Mayberry M J, Bard W D 1990 Nucl. Fusion 30 2551

    [16]

    Qin C M, Zhang X J, Zhao Y P 2012 24th IAEA Fusion Energy Conference San Diego, October 8-13, 2012 EX/P6-25

  • [1] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [2] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [3] 马志斌, 沈武林, 吴俊, 严垒, 汪建华. 圆筒电极对离子磁电加热的影响. 物理学报, 2013, 62(1): 015202. doi: 10.7498/aps.62.015202
    [4] 钟国强, 胡立群, 王相綦, 李晓玲, 林士耀, 许平, 段艳敏, 毛松涛, 张继忠. HT-7上射频波加热时中子辐射行为的研究. 物理学报, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [5] 沈武林, 马志斌, 谭必松, 吴俊, 汪建华. ECR等离子体的磁电加热研究. 物理学报, 2011, 60(10): 105204. doi: 10.7498/aps.60.105204
    [6] 顾旭东, 赵正予, 倪彬彬, 王 翔, 邓 峰. 地基高频加热激励ELF/VLF波对辐射带高能电子的准线性散射. 物理学报, 2008, 57(10): 6673-6682. doi: 10.7498/aps.57.6673
    [7] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [8] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [9] 王世庆, 金亚秋. 电子回旋共振加热情形锯齿振荡的数值分析. 物理学报, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [10] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. 快波少数离子加热. 物理学报, 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [11] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. Fokker-Planck方程在快波加热中的应用. 物理学报, 1998, 47(7): 1137-1142. doi: 10.7498/aps.47.1137
    [12] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. 离子回旋波加热天线耦合的一种改进模型. 物理学报, 1998, 47(7): 1130-1136. doi: 10.7498/aps.47.1130
    [13] 沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, 实验小组. HT-6M托卡马克二次谐波离子回旋共振加热实验. 物理学报, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [14] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [15] 何绍堂, 黄文忠, 孙永良, 杨尚金, 蔡玉琴, 何安, 孔令华, 淳于书泰. 激光加热Cu和NaF靶产生的1.2keV区X射线转换效率的测量. 物理学报, 1993, 42(8): 1252-1256. doi: 10.7498/aps.42.1252
    [16] 罗耀全, 王龙, 杨思泽, 陈雁萍, 戚霞枝, 李赞良, 王文书, 李文莱, 赵华, 唐继辉, 谭富传. CT-6B托卡马克的电子迴旋波加热实验. 物理学报, 1990, 39(3): 399-407. doi: 10.7498/aps.39.399
    [17] 陈雁萍, 张淳沅. 粒子轨道损失对低杂波离子随机加热的影响. 物理学报, 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [18] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究. 物理学报, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [19] 谭维翰, 徐至展. 激光等离子体的单频及双频加热. 物理学报, 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
    [20] 陈一询, 徐叙瑢. 关于加热发光曲线的分析. 物理学报, 1959, 15(7): 393-396. doi: 10.7498/aps.15.393
计量
  • 文章访问数:  3838
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-10-28
  • 刊出日期:  2013-04-05

快波模式转换效率的理论分析和数值模拟

  • 1. 中国科学院等离子体物理研究所, 合肥 230031
    基金项目: 国家磁约束核聚变能研究专项(批准号: 2010GB110000)、国家自然科学基金 (批准号: 11105179, 11075182)和中国科学院知识创新工程重要方向性项目(批准号: Y05FCQ1126)资助的课题.

摘要: 利用相位积分法, 在传统的布登模型基础上, 考虑了高场侧截止层的影响, 构建了三体模型, 求出了快波通过单一衰减层的传输系数、反射系数和模式转换系数. 在双离子情况下, 模拟的结果与Kazakov等人的结果相符合. 针对EAST实验, 将双离子模型推广至三离子模型, 分析了不同相位、少子浓度、频率和纵场强度对快波模式转换效率的影响, 为未来离子回旋加热实验提供参考.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回