-
本文测量了全反式β胡萝卜素在二甲基亚砜中81–25 ℃ 范围的紫外–可见吸收和拉曼光谱. 结果表明, 随温度降低, 紫外–可见吸收光谱、拉曼光谱都发生红移, 拉曼光谱线型变窄, 散射截面增加这些现象的发生是由于随温度降低, β胡萝卜素分子的热无序降低、分子结构有序性增加、π电子离域扩展, 有效共轭长度增加, 分子的电子能隙变窄. 另外, 随着温度的降低, 溶剂密度增加, 由Lorentz-Lorenz 关系得知相伴的折射率增加, 从而引起吸收光谱的红移. CC键键长增加, 使CC 键拉曼光谱红移; 振动弛豫时间变长, 各CC 键之间的键长差减小, 线宽变窄; 但由于声子, π电子耦合加强使CC键拉曼线型不对称程度增加, 低频端"肩"扩展, CC键的弱阻尼相干振动增加, 使拉曼散射截面增加.The effects of temperature on the visible absorption and Raman spectra of all-trans-β-carotene dissolved in dimethyl sulfoxide at temperatures ranging from 81 ℃ to 18 ℃ were determined. The bands of the visible absorption and Raman spectra of all-trans-β-carotene showed red blue shifts. The bandwidth of the Raman spectra becomes narrow. Raman scattering cross-section increases as the temperature decreases. The red shift of the absorption spectrum is attributed to the thermal conformational change-induced decrease in the effective conjugation length in all-trans-β-carotene chains. The molecular structural order increases and the π-electron delocalization range is extended as the temperature decreases. The red shift in all-trans-β-carotene can be also attributed to the decrease in the liquid density, and the concomitant decrease in the refractive index is shown by the Lorentz-Lorenz relation. The apparent behavior of the temperature-induced band broadening of CC bonds can be associated with the decrease of difference in C-C and C=C bond lengths, and the shorter vibrational relaxation time. The shoulder observed below 1520 cm-1 shows a red shift. The enhancement of coherent weakly-damped CC stretching vibrations may increase the Raman scattering cross-section.
-
Keywords:
- all-trans-β-carotene /
- molecular structural order /
- red shift /
- raman scattering cross-section
[1] Mckenzie J L, Waid M C, Shi R Y, Webser T J 2004 Biomaterials 25 1309
[2] Choudhury K R, Sahoo Y, Prasad P N 2005 Advanced materials 17 2877
[3] Ryskulov A A, Liopo V A, Ovchinnikov E V 2011 Journal of friction and wear 32 30
[4] Andreeva A, Apostolova I, Velitchkova M 2011 Spectrochimica Acta Part A 78 1261
[5] Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698
[6] Britton G, Jensen S L, Pfander H 2004 Carotenoid Handbook Birkhauser Verlag, AG Basel, 2004 p550
[7] Brackmann C, Bengtsson A, Alminger M L, Svanberg U, Enejder A 2011 J. Raman Spectrosc 42 586
[8] Qu G N, Li D F, Li Z L, OuYang S L, Li Z W, Gao S Q, Zhou M, Wang W W, Yang J G 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威, 高淑琴, 周密, 王微微, 杨建戈 2010 物理学报 59 3168]
[9] Li Z L, OuYang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]
[10] Qu G N, OuYang S L, Sun C L, Wang W W, Li Z W, Men Z W 2011 Chin. Phys. B 20 0378031
[11] OuYang S L, Sun C L, Zhou M, Li Z L, Men Z W, Li D F, Li Z W, Gao S Q, Lu G H 2010 J. Raman Spectrosc 41 1650
[12] Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652
[13] Frank H A, Young A J, Britton G R, Cogdell J 1999 Advances in Photosynthesis Kluwer Academic Publishers, Dordrecht 1999 p191
[14] Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80
[15] Gierschner J, Mack H G, Ler L, Oelkrug D 2002 J. Chem. Phys. 116 8596
[16] Renge I, van Grondelle R, Dekker J P 1996 J. Photochem. Photobiol A: Chemistry 96 109
[17] Fujimatsu H, Ideta Y, Nakamura H, Usami H, Ogasawara S 2001 Polym. J. 33 543
[18] Nagae H, Kuki M, Cogdell R J, Koyama Y 1994 J. Chem. Phys. 101 6750
[19] Bicknelld R T M, Davies D B, Lawrence K G 1982 J. Chem. SOC. Faraday Trans. I 78 1595
[20] Noguchi T, Hayashi H, Tasumi M, Atkinson G H 1991 J. Chem. Phys. 95 3167
[21] Kolodziejski M, Waliszewska G, Abramczyk H 1996 Chem. Phys. 213 341
[22] Abramczyk H, Kolodziejski M, Waliszewska G 1999 J. Mol. Liq. 79 223
[23] Merilin J C 1985 Pure. & Appl. Chem. 57 85
[24] Paraschuk D Y, Arnautov S A, Shcgegolikhin A N, Kobryanskii V M 1996 TETP Lett. 64 658
[25] Tori H, Tasumi M 1990 J. Phys. Chem. 94 227
[26] Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 1732
[27] Biswas N, Umapathy S 1998 Appl. Spectrosc 52 496
[28] Perry S, Zerda T W, Jonas J 1985 J. Chem. Phys. 75 4214
-
[1] Mckenzie J L, Waid M C, Shi R Y, Webser T J 2004 Biomaterials 25 1309
[2] Choudhury K R, Sahoo Y, Prasad P N 2005 Advanced materials 17 2877
[3] Ryskulov A A, Liopo V A, Ovchinnikov E V 2011 Journal of friction and wear 32 30
[4] Andreeva A, Apostolova I, Velitchkova M 2011 Spectrochimica Acta Part A 78 1261
[5] Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698
[6] Britton G, Jensen S L, Pfander H 2004 Carotenoid Handbook Birkhauser Verlag, AG Basel, 2004 p550
[7] Brackmann C, Bengtsson A, Alminger M L, Svanberg U, Enejder A 2011 J. Raman Spectrosc 42 586
[8] Qu G N, Li D F, Li Z L, OuYang S L, Li Z W, Gao S Q, Zhou M, Wang W W, Yang J G 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威, 高淑琴, 周密, 王微微, 杨建戈 2010 物理学报 59 3168]
[9] Li Z L, OuYang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]
[10] Qu G N, OuYang S L, Sun C L, Wang W W, Li Z W, Men Z W 2011 Chin. Phys. B 20 0378031
[11] OuYang S L, Sun C L, Zhou M, Li Z L, Men Z W, Li D F, Li Z W, Gao S Q, Lu G H 2010 J. Raman Spectrosc 41 1650
[12] Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652
[13] Frank H A, Young A J, Britton G R, Cogdell J 1999 Advances in Photosynthesis Kluwer Academic Publishers, Dordrecht 1999 p191
[14] Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80
[15] Gierschner J, Mack H G, Ler L, Oelkrug D 2002 J. Chem. Phys. 116 8596
[16] Renge I, van Grondelle R, Dekker J P 1996 J. Photochem. Photobiol A: Chemistry 96 109
[17] Fujimatsu H, Ideta Y, Nakamura H, Usami H, Ogasawara S 2001 Polym. J. 33 543
[18] Nagae H, Kuki M, Cogdell R J, Koyama Y 1994 J. Chem. Phys. 101 6750
[19] Bicknelld R T M, Davies D B, Lawrence K G 1982 J. Chem. SOC. Faraday Trans. I 78 1595
[20] Noguchi T, Hayashi H, Tasumi M, Atkinson G H 1991 J. Chem. Phys. 95 3167
[21] Kolodziejski M, Waliszewska G, Abramczyk H 1996 Chem. Phys. 213 341
[22] Abramczyk H, Kolodziejski M, Waliszewska G 1999 J. Mol. Liq. 79 223
[23] Merilin J C 1985 Pure. & Appl. Chem. 57 85
[24] Paraschuk D Y, Arnautov S A, Shcgegolikhin A N, Kobryanskii V M 1996 TETP Lett. 64 658
[25] Tori H, Tasumi M 1990 J. Phys. Chem. 94 227
[26] Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 1732
[27] Biswas N, Umapathy S 1998 Appl. Spectrosc 52 496
[28] Perry S, Zerda T W, Jonas J 1985 J. Chem. Phys. 75 4214
计量
- 文章访问数: 7349
- PDF下载量: 711
- 被引次数: 0