搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性蜂窝夹芯材料的电磁传输性能分析算法研究

汤兴刚 张卫红 邱克鹏

引用本文:
Citation:

各向异性蜂窝夹芯材料的电磁传输性能分析算法研究

汤兴刚, 张卫红, 邱克鹏

A new analysis of electromagnetic transmission characteristics of anisotropic honeycomb sandwiches

Tang Xing-Gang, Zhang Wei-Hong, Qiu Ke-Peng
PDF
导出引用
  • 蜂窝夹芯结构作为天线罩最常用的透波材料, 其电各向异性特征对电磁传输性能具有不可忽略的影响. 本文基于各向异性蜂窝夹芯材料对电磁波水平极化和垂直极化分量的有效介电常数, 建立了多层蜂窝夹芯材料的等效传输线网络传输方程, 并给出了其传输系数的计算公式.该计算公式由于考虑了材料的三维各向异性特征, 不仅理论上可以计算多层各向异性介质板对任意方向入射电磁波的传输系数, 而且能够揭示出材料方向角对传输性能的影响规律.同时, 通过传输线网络等效, 其计算效率远高于有限元等方法.数值算例表明, 本方法能够有效地揭示蜂窝夹芯材料的各向异性对其传输性能的影响, 计算结果在入射角为0°–80° 时与有限元法符合很好.
    Honeycomb sandwiches are widely used as electromagnetic transparent materials for radomes. However, the electric anisotropy has a significant influence on the transmission performance. This work aims to investigate the electromagnetic transmission characteristics of the anisotropic sandwich panel. First, we deduce the effective permittivity of multilayered anisotropic sandwich material in the respect of the horizontal polarization and the perpendicular polarization components of the incident wave. Second, the transmission line network method related to the multilayered homogeneous medium is improved to simulate the electromagnetic transmission through honeycomb sandwiches and to calculate the transmission ratio. As the proposed method takes into account the three-dimensional anisotropy of each slab, it can simulate the transmission of plane wave with arbitrary incident direction in multilayered anisotropy sandwich panels, moreover, it can reveal the influence of material orientation on the transmission characteristics. Since the multilayer configuration is simulated by transmission line network, the proposed method is far more efficient than the finite element method. Numerical experiments indicate that the influence of the electric anisotropy on the transmission performance of honeycomb sandwich materials can be well revealed. In an incident angle range between 0 and 80 degrees, the simulation results fit well to the results obtained by the finite element method.
    • 基金项目: 国家自然科学基金(批准号:51275424, 10925212, 11002112, 11002113) 和国家重点基础研究发展计划(批准号:2011CB610304)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275424, 10925212, 11002112, 11002113) and the National Basic Research Program of China (Grant No. 2011CB610304).
    [1]

    Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]

    [2]

    Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782

    [3]

    Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]

    [4]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]

    [5]

    Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]

    [6]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [7]

    Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 物理学报 61 114101]

    [8]

    Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143

    [9]

    Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 物理学报 52 3061]

    [10]

    Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 物理学报 60 074212]

    [11]

    Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 物理学报 59 5235]

    [12]

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012物理学报 61 160302]

    [13]

    Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107

    [14]

    Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 物理学报 49 1702]

    [16]

    Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 物理学报 56 4509]

    [17]

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089]

    [18]

    Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217

    [19]

    Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389

  • [1]

    Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]

    [2]

    Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782

    [3]

    Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]

    [4]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]

    [5]

    Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]

    [6]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [7]

    Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 物理学报 61 114101]

    [8]

    Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143

    [9]

    Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 物理学报 52 3061]

    [10]

    Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 物理学报 60 074212]

    [11]

    Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 物理学报 59 5235]

    [12]

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012物理学报 61 160302]

    [13]

    Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107

    [14]

    Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 物理学报 49 1702]

    [16]

    Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 物理学报 56 4509]

    [17]

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089]

    [18]

    Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217

    [19]

    Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389

  • [1] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [2] 王磊, 范宜仁, 黄瑞, 韩玉娇, 巫振观, 邢东辉, 李炜. 各向异性介质多分量感应测井三维Born几何因子理论研究. 物理学报, 2015, 64(23): 239301. doi: 10.7498/aps.64.239301
    [3] 杨红卫, 慕振峰, 王震. 精细积分法在含各向异性介质波导不连续性问题中的应用. 物理学报, 2013, 62(13): 134101. doi: 10.7498/aps.62.134101
    [4] 李琼, 翟永惠, 梁果, 郭旗. 各向异性介质中的椭圆空间光孤子特性. 物理学报, 2013, 62(2): 024202. doi: 10.7498/aps.62.024202
    [5] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [6] 陈桂波, 毕娟, 张烨, 李宗文. 各向异性介质三维电磁响应模拟的Ho-GEBA算法. 物理学报, 2013, 62(9): 094101. doi: 10.7498/aps.62.094101
    [7] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [8] 霍光谱, 胡祥云, 方慧, 黄一凡. 层状各向异性介质大地电磁联合反演研究. 物理学报, 2012, 61(12): 129101. doi: 10.7498/aps.61.129101
    [9] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [10] 李建龙, 唐世红, 朱世富, 傅克祥. 各向异性介质浮雕光栅体内光波场的传输. 物理学报, 2010, 59(8): 5467-5473. doi: 10.7498/aps.59.5467
    [11] 陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文. 水平层状各向异性介质中电磁场并矢Green函数的一种高效算法. 物理学报, 2009, 58(3): 1608-1618. doi: 10.7498/aps.58.1608
    [12] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [13] 林宝勤, 徐利军, 袁乃昌. 以各向异性介质为衬底的共面紧凑型光子带隙结构. 物理学报, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [14] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
    [15] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [16] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射. 物理学报, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [17] 李国旺, 黄吝根, 杨顺华. 自由表面附近运动的位错——各向异性介质情况. 物理学报, 1992, 41(1): 69-79. doi: 10.7498/aps.41.69
    [18] 吕景发. 关于在各向异性介质中的契连科夫辐射. 物理学报, 1965, 21(5): 1083-1088. doi: 10.7498/aps.21.1083
    [19] 吕景发. 各向异性介质中契连科夫辐射的量子理论. 物理学报, 1965, 21(5): 1049-1060. doi: 10.7498/aps.21.1049
    [20] 顾福年. 关于求各向异性介质中电磁场的格林张量函数的一个方法. 物理学报, 1962, 18(12): 636-645. doi: 10.7498/aps.18.636
计量
  • 文章访问数:  6143
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2012-11-09
  • 刊出日期:  2013-04-05

/

返回文章
返回