搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有涨落质量的线性谐振子的共振行为

蔚涛 张路 罗懋康

引用本文:
Citation:

具有涨落质量的线性谐振子的共振行为

蔚涛, 张路, 罗懋康

The resonant behavior of a linear harmonic oscillator with fluctuating mass

Yu Tao, Zhang Lu, Luo Mao-Kang
PDF
导出引用
  • Brown运动中,环境分子的吸附能力使Brown粒子的质量存在涨落. 本文将这一质量涨落建模为对称双态噪声, 以考察其对系统共振行为的影响. 首先,利用Shapiro-Loginov公式和Laplace变换推导系统稳态响应振幅的解析表达式, 并根据相应数值结果, 研究系统的共振行为; 然后, 通过仿真实验对理论与实际的符合情况进行对比分析, 验证理论结果的可靠性及其对实际应用的指导意义. 理论结果和仿真实验均表明: 1) 系统稳态响应为频率与外部驱动相同的简谐振动; 2) 稳态响应振幅随外部驱动频率、振子质量、噪声强度及相关率的变化分别相应出现真实共振、参数诱导共振、随机共振现象; 3) 质量涨落噪声导致系统共振形式出现多样化现象, 包括单峰共振、单峰单谷共振、双峰共振等.
    The mass of Brownian particle is fluctuant in a viscous medium, because the molecules of surrounding medium may randomly stick on it. This mass fluctuation influence on the system resonant behavior is studied by modeling it as a symmetric dichotomous noise. Using Shapiro-Loginov formula and Laplace transformation, the analytical expression of system steady response amplitude is presented. The corresponding numerical results are used to discuss system resonant behavior. Furthermore, the reliability of theoretical results is tested by simulation experiments. All the research results show that: 1) the system steady response is a simple harmonic vibration which has the same frequency as the driving signal; 2) with the variations of driving frequency, oscillator mass and noise parameters, the system presents real resonance, parameter induced resonance and stochastic resonance phenomenon, respectively; 3) because of the mass fluctuation, some new resonant forms are observed, such as one-peak and one-valley resonance, two-peak resonance, etc.
    • 基金项目: 国家自然科学基金(批准号: 11171238)和国家自然科学基金创新研究群体科学基金(批准号: 11221101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 11221101).
    [1]

    Landau L D, Lifshitz E M (Translated by Li J F) 2007 Mechanics (5st Ed.) (Beijing: Higher Education Press) pp75-102 (in Chinese) [朗道L. D., 栗弗席兹E. M. 著, 李俊峰译 2007 力学(第五版)(北京: 高等教育出版社) 第75–102页]

    [2]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Press) pp5, 32 (in Chinese) [胡岗 1994 随机力与非线性系统(上海: 上海科技教育出版社) 第5, 32页]

    [3]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) pp79-80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第79-80页]

    [4]

    Gitterman M 2004 Phys. Rev. E 69 041101

    [5]

    Méndez V, Horsthemke W, Mestres G, Campos D 2011 Phys. Rev. E 84 041137

    [6]

    Guo L M, Xu W, Ruan C L, Zhao Y 2008 Acta Phys. Sin. 57 7482 (in Chinese) [郭立敏, 徐伟, 阮春雷, 赵燕 2008 物理学报 57 7482]

    [7]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 物理学报 58 2895]

    [8]

    Blum J, Wurm G, Kempf S, Poppe T 2000 Phys. Rev. Lett. 85 2426

    [9]

    Pérez A T, Saville D, Soria C 2001 Europhys. Lett. 55 425

    [10]

    Goldhirsch I, Zanetti G 1993 Phys. Rev. Lett. 70 1619

    [11]

    Gitterman M, Klyatskin V I 2010 Phys. Rev. E 81 051139

    [12]

    Gitterman M 2012 Physica A 391 3033

    [13]

    Gitterman M 2012 Physica A 391 5343

    [14]

    Portman J, Khasin M, Shaw S W, Dykman M I 2010 APS March Meeting Portland, USA, March 15-19, 2010 Abstract V14.010

    [15]

    Luczka J, Hanggi P, Gadomski A 1995 Phys. Rev. E 51 5762

    [16]

    Rubí J M, Gadomski A 2003 Physica A 326 333

    [17]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [18]

    Gitterman M, Shapiro I 2011 J. Stat. Phys. 144 139

    [19]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [20]

    Li P, Nie L R, Huang Q R, Sun X X 2011 Chin. Phys. B 21 050503

  • [1]

    Landau L D, Lifshitz E M (Translated by Li J F) 2007 Mechanics (5st Ed.) (Beijing: Higher Education Press) pp75-102 (in Chinese) [朗道L. D., 栗弗席兹E. M. 著, 李俊峰译 2007 力学(第五版)(北京: 高等教育出版社) 第75–102页]

    [2]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Press) pp5, 32 (in Chinese) [胡岗 1994 随机力与非线性系统(上海: 上海科技教育出版社) 第5, 32页]

    [3]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) pp79-80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第79-80页]

    [4]

    Gitterman M 2004 Phys. Rev. E 69 041101

    [5]

    Méndez V, Horsthemke W, Mestres G, Campos D 2011 Phys. Rev. E 84 041137

    [6]

    Guo L M, Xu W, Ruan C L, Zhao Y 2008 Acta Phys. Sin. 57 7482 (in Chinese) [郭立敏, 徐伟, 阮春雷, 赵燕 2008 物理学报 57 7482]

    [7]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 物理学报 58 2895]

    [8]

    Blum J, Wurm G, Kempf S, Poppe T 2000 Phys. Rev. Lett. 85 2426

    [9]

    Pérez A T, Saville D, Soria C 2001 Europhys. Lett. 55 425

    [10]

    Goldhirsch I, Zanetti G 1993 Phys. Rev. Lett. 70 1619

    [11]

    Gitterman M, Klyatskin V I 2010 Phys. Rev. E 81 051139

    [12]

    Gitterman M 2012 Physica A 391 3033

    [13]

    Gitterman M 2012 Physica A 391 5343

    [14]

    Portman J, Khasin M, Shaw S W, Dykman M I 2010 APS March Meeting Portland, USA, March 15-19, 2010 Abstract V14.010

    [15]

    Luczka J, Hanggi P, Gadomski A 1995 Phys. Rev. E 51 5762

    [16]

    Rubí J M, Gadomski A 2003 Physica A 326 333

    [17]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [18]

    Gitterman M, Shapiro I 2011 J. Stat. Phys. 144 139

    [19]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [20]

    Li P, Nie L R, Huang Q R, Sun X X 2011 Chin. Phys. B 21 050503

  • [1] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [2] 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振. 物理学报, 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [3] 张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析. 物理学报, 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [4] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [5] 钟苏川, 蔚涛, 张路, 马洪. 具有质量及频率涨落的欠阻尼线性谐振子的随机共振. 物理学报, 2015, 64(2): 020202. doi: 10.7498/aps.64.020202
    [6] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振. 物理学报, 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [7] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [8] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响. 物理学报, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [9] 张路, 钟苏川, 彭皓, 罗懋康. 乘性二次噪声驱动的线性过阻尼振子的随机共振. 物理学报, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [10] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振. 物理学报, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [11] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [12] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响. 物理学报, 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [13] 郭立敏, 徐 伟, 阮春蕾, 赵 燕. 二值噪声驱动下二阶线性系统的随机共振. 物理学报, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [14] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [15] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [16] 金国祥, 曹 力, 张良英. 偏置调幅波调制噪声的单模激光随机共振. 物理学报, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [17] 张良英, 曹 力, 金国祥. 色噪声驱动下调幅波的单模激光随机共振. 物理学报, 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [18] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [19] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [20] 祝恒江, 李 蓉, 温孝东. 利用随机共振在强噪声下提取信息信号. 物理学报, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
计量
  • 文章访问数:  3855
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-12
  • 修回日期:  2013-01-12
  • 刊出日期:  2013-06-05

具有涨落质量的线性谐振子的共振行为

  • 1. 四川大学数学学院, 成都 610064
    基金项目: 国家自然科学基金(批准号: 11171238)和国家自然科学基金创新研究群体科学基金(批准号: 11221101)资助的课题.

摘要: Brown运动中,环境分子的吸附能力使Brown粒子的质量存在涨落. 本文将这一质量涨落建模为对称双态噪声, 以考察其对系统共振行为的影响. 首先,利用Shapiro-Loginov公式和Laplace变换推导系统稳态响应振幅的解析表达式, 并根据相应数值结果, 研究系统的共振行为; 然后, 通过仿真实验对理论与实际的符合情况进行对比分析, 验证理论结果的可靠性及其对实际应用的指导意义. 理论结果和仿真实验均表明: 1) 系统稳态响应为频率与外部驱动相同的简谐振动; 2) 稳态响应振幅随外部驱动频率、振子质量、噪声强度及相关率的变化分别相应出现真实共振、参数诱导共振、随机共振现象; 3) 质量涨落噪声导致系统共振形式出现多样化现象, 包括单峰共振、单峰单谷共振、双峰共振等.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回